scholarly journals Fundamental study of planetary screw. Structure and apparent coefficient of friction.

1986 ◽  
Vol 52 (1) ◽  
pp. 176-180 ◽  
Author(s):  
Jiro OTSUKA ◽  
Shigeo FUKADA ◽  
Takashi OSAWA
2017 ◽  
Vol 23 (3) ◽  
pp. 175-181 ◽  
Author(s):  
Charles V. Schwab

Abstract. Calculation of the extraction force for a grain entrapment victim requires a coefficient of friction between the grain and the surface of the victim. Because denim is a common fabric for the work clothes that cover entrapment victims, the coefficient of friction between grain and denim becomes necessary. The purpose of this research was to calculate the apparent coefficient of friction of wheat on denim fabric using a proven procedure. The expectation is to improve the current understanding of conditions that influence extraction forces for victims buried in wheat. The apparent coefficient of friction of wheat on denim fabric was calculated to be 0.167 with a standard deviation of ±0.013. The wheat had a moisture content of 10.7% (w.b.) and bulk density of 778.5 kg m-3. The apparent coefficient of friction of wheat on denim was not significantly affected by pull speeds of 0.004, 0.008, and 0.021 mm s-1 nor normal grain pressures of 3.2, 4.8, 6.3, 7.9, and 11.1 kPa. This is a beginning of understanding the conditions that influence the extraction forces for grain entrapment victims. Keywords: Farm safety, Grain entrapment, Grain rescue, Grain extraction.


Author(s):  
Polina Prokopovich ◽  
Stephanos Theodossiades ◽  
Homer Rahnejat ◽  
Darren Hodson

In many drug dispensing devices, such as syringes and inhalers, a rubber ring is used as a seal. During device actuation the seal is subjected to friction which in turn causes it to deform. This can lead to suboptimal performance of the device and as a consequence variability in the delivered dose. Seal friction is complex, arising from adhesion of rubber in contact with a moving counterface, viscous action of a thin film of entrained fluid into the contact and ploughing of seal asperities. Therefore, the first step in the understanding of the conjunctional behaviour of rubber seals is the fundamental study of these friction mechanisms. A developed model can then be validated against measurements, prior to its use in a multi-body dynamic model of the inhaler valve to predict product performance, robustness and variability due to manufacturing tolerances. This paper undertakes two distinct studies. Firstly, a friction model for the rough elastomeric material, typically used for valve seals is developed. The model is then validated against measurements in nano-scale. Friction data is presented for nitrile rubber, using a silicon nitride AFM tip for nano-scale interactions. The validation is then extended to macro-scale motion of an instrumented trolley, incorporating an elastomeric surface sliding on a polymeric counterface. These tests are carried out for polybutylene terephthalate (PBT). Secondly, the validated friction model is used in an elastomeric seal model in-situ within the valve and in contact with a polymeric stem surface and subject to both global fittment deformation and canister pressure. Reasonable agreement is found between the measurements and model predictions for the nano-scale coefficient of friction of rubber against silicon nitride. Similarly, good agreement has been obtained for the mean coefficient of friction of rubber against PBT. In addition, the mechanism of adhesion between contacting surfaces of gasket and stem is taken into account.


1991 ◽  
Vol 64 (1) ◽  
pp. 108-117 ◽  
Author(s):  
C. W. Extrand ◽  
A. N. Gent ◽  
S. Y. Kaang

Abstract The contact width, and hence contact area, for an elastic wedge pressed against a rigid flat surface appears to be proportional to the applied load per unit length. For a particular rubber sample, the reciprocal of the constant of proportionality, i.e., the mean normal pressure, was 130 kPa, i.e., about 7% of the tensile modulus E of the material. It was also independent of sliding speed over the range examined. Thus, a sharp wedge gave a relatively high loading pressure, independent of the applied load. As a result, the coefficient of friction was also independent of applied load over a wide range. The coefficient of friction was measured for a wedge of an unfilled natural rubber vulcanizate over wide ranges of sliding speed (50 µm/s to 100 mm/s) and test temperature (3°C to 63°C). It was found to increase with sliding speed and decrease with temperature over these ranges. The results at different temperatures were superposable using the WLF rate-temperature equivalence to create a master curve of friction vs. reduced sliding speed, rising from a value of about 1.5 at high temperatures and low speeds to about 5 at low temperatures and high speeds. Chlorination of a thin surface region reduced the coefficient of friction and its dependence on speed and temperature. It then became similar to that typically found for thermoplastics, 0.4 to 0.7. The geometry of sliding a flexible strip against a rigid curved surface caused high values of the apparent coefficient of friction to be obtained at relatively small departures from normal loading. In an extreme case, frictional seizure was observed when a high-friction sample contacted the glass surface at an angle of about 15° to the direction of loading. The apparent coefficient of friction then became indefinitely large. This same phenomenon of abnormally large frictional effects would be expected to occur in the case of conventional windshield-wiper blades, sliding over curved glass windshields.


2019 ◽  
Vol 20 (6) ◽  
pp. 624 ◽  
Author(s):  
Sana Werda ◽  
Arnaud Duchosal ◽  
Guénhaël Le Quilliec ◽  
Antoine Morandeau ◽  
René Leroy

The main aim of this paper was to reproduce the frictional behaviour that occurred in milling with a pin-on-cylinder system. Three different tribological tests were conducted reproducing friction phenomenon that happened in three machining conditions: (i) dry rubbing, representing the dry machining condition, (ii) MQL applied to front face rubbing which was similar to milling with MQL applied on the insert rake face and (iii) MQL applied to rear end rubbing which was similar to milling with MQL applied on flank face. Tribological tests were carried out with coated tungsten carbide pins rubbing on X100CrMoV5 steel cylinder. Apparent coefficient of friction, adhesion area and heat flux transmitted to the pin were analysed. It has been shown that MQL rear end rubbing provided a lower adhesion area and lower apparent coefficient of friction than with MQL front face rubbing. Furthermore, MQL rear end rubbing resulted in a greater cooling ability. These findings helped to explain why better results were obtained with MQL flank face lubrication in milling compared to MQL rake face lubrication.


1989 ◽  
Vol 32 (5) ◽  
pp. 1769-1773 ◽  
Author(s):  
R. A. Bucklin ◽  
S. A. Thompson ◽  
I. J. Ross ◽  
R. H. Biggs

Author(s):  
Md. Ziaur Rahman ◽  
Takumi Ban ◽  
Hideshi Kakishima ◽  
Takashi Yamamoto

A newly developed full scale wheel-rail contact testing machine is used to obtain detailed data on flange climb behavior with covering various loads and displacements at the wheel flange and rail contact under both rolling-sliding and pure sliding conditions. The effects of different surface roughness of the wheel flange on coefficient of friction at the contact point in wheel flange climb mechanism were investigated. A correlation between different state of the interface (i.e. surface of dry, wet, rust, oily and different lubricated condition by solid lubricant) and wheel flange surface roughness with rail were drawn. The coefficient of friction was significantly influenced in pure sliding conditions than that of rolling-sliding conditions by the degree of the asperities on the wheel flange surface. Moreover, solid lubricant showed better performance to reduce coefficient of friction. However, the rust on the rail surfaces was one of the important factors to destabilize the friction behavior.


1988 ◽  
Vol 31 (5) ◽  
pp. 1518-1524 ◽  
Author(s):  
S. A. Thompson ◽  
R. A. Bucklin ◽  
C. D. Batich ◽  
I. J. Ross

2013 ◽  
Vol 539 ◽  
pp. 84-88 ◽  
Author(s):  
Yue Mao ◽  
Wu Yao ◽  
Jing Xu

Investigation at micro- and nano-scale is beneficial for the fundamental study of cement-based material as an extremely complex composite. This paper presents a preliminary exploration on the unhydrated cement grain/ C-S-H gel interface using nano-scratch technique. By comprehensive analysis of the penetration depth, the coefficient of friction, and the elastic deformation ratio, the interfacial width of different w/c ratio and curing age were obtained, which shows a tendency to increase with the curing age in the range of 1-4 um, while has no relation to the w/c ratio.


Author(s):  
Abhishek Kumar ◽  
Basil Kuriachen ◽  
Surender Ontela

Inconel 718 is gaining its importance in the aerospace and power plant industries because of its high strength to weight ratio. The lack of understanding of the tool chip interface for Inconel 718 restricts the prediction of the apparent coefficient of friction and thus the cutting forces, thereby the machining efficiency. In the present study an analytical model has been developed accounting the actual variation of stresses over the rake face. The model focuses on the variation of shear stresses in the sticking region and has been considered to be increasing exponentially with distance from tool tip. The primary shear zone is assumed to be a thin layer with constant thickness and has been modelled using Johnson Cook material model. The shear stresses at the entry and exit of the primary shear zone has been calculated using iterative techniques proposed in the literature. The secondary shear zone has been analyzed dividing the contact length into two distinct regions and each region has been dealt separately. The ratio of real area of contact to the apparent area of contact has been given consideration and dealt with at macroscopic level. Experimental values have been extracted from previous studies on Inconel 718. The predictions of the analytical model was found to be in good agreement with experimental results. The experimental apparent coefficient of friction was obtained as 0.5119 against 0.4733 from the developed model at a velocity of 70 mm/min, depth of cut of 1mm, nose radius of 0.8mm and with negative rake angle (−6°) with CNMG0812 tool. The predicted and the experimental friction coefficient showed a variation of 7.07% – 10% and thus can serve as reliable model for Inconel 718.


Sign in / Sign up

Export Citation Format

Share Document