scholarly journals Speech Induced Changes in Corticospinal Excitability. Determination of dominant hemisphere with single magnetic stimulation.

1999 ◽  
Vol 19 (2) ◽  
pp. 128-135
Author(s):  
Hiroshi Tokimura ◽  
Hirofumi Hamada ◽  
Tetsuhiko Asakura ◽  
John C. Rothwell
2013 ◽  
Vol 38 (11) ◽  
pp. 1154-1161 ◽  
Author(s):  
Kevin E. Power ◽  
David B. Copithorne

Human studies have not assessed supraspinal or spinal motoneurone excitability in the quiescent state prior to a rhythmic and alternating cyclical motor output. The purpose of the current study was to determine whether supraspinal and (or) spinal motoneurone excitability was modulated in humans prior to arm cycling when compared with rest with no intention to move. We hypothesized that corticospinal excitability would be enhanced prior to arm cycling due, in part, to increased spinal motoneurone excitability. Supraspinal and spinal motoneurone excitability were assessed via transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid stimulation of the corticospinal tract, respectively. Surface electromyography recordings of TMS motor evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were made from the relaxed biceps brachii muscle prior to rhythmic arm cycling and at rest with no intention to move. The amplitude of the MEPs was greater (mean increase: +9.8% of maximal M wave; p = 0.006) and their onset latencies were shorter (mean decrease: –1.5 ms; p < 0.05) prior to cycling when compared with rest. The amplitudes of the CMEPs at any of 3 stimulation intensities were not different between conditions. We conclude that premovement enhancement of corticospinal excitability is greater prior to arm cycling than at rest because of increases in supraspinal but not spinal motoneurone excitability.


2015 ◽  
Vol 8 (2) ◽  
pp. 317-318 ◽  
Author(s):  
Maja Rogić Vidaković ◽  
Marina Zmajević Schönwald ◽  
Tomislav Jurić ◽  
Nikola Erceg ◽  
Andreja Bubić ◽  
...  

2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas G. Di Virgilio ◽  
Magdalena Ietswaart ◽  
Ragul Selvamoorthy ◽  
Angus M. Hunter

Abstract Background The suitability of corticomotor inhibition and corticospinal excitability to measure brain health outcomes and recovery of sport-related head impact (concussion and subconcussion) depends on good inter-day reliability, which is evaluated in this study. Transcranial magnetic stimulation (TMS) reliability in soccer players is assessed by comparing soccer players, for whom reliability on this measure may be reduced due to exposure to head impacts, to generally active individuals not engaged in contact sport. Methods TMS-derived corticomotor inhibition and corticospinal excitability were recorded from the rectus femoris muscle during two testing sessions, spaced 1–2 weeks apart in 19 soccer players (SOC—age 22 ± 3 years) and 20 generally active (CON—age 24 ± 4 years) healthy volunteers. Inter-day reliability between the two time points was quantified by using intra-class correlation coefficients (ICC). Intra-group reliability and group differences on actual measurement values were also explored. Results Good inter-day reliability was evident for corticomotor inhibition (ICCSOC = 0.61; ICCCON = 0.70) and corticospinal excitability (ICCSOC = 0.59; ICCCON = 0.70) in both generally active individuals and soccer players routinely exposed to sport-related head impacts. Corticomotor inhibition showed lower coefficients of variation than excitability for both groups (InhibSOC = 15.2%; InhibCON = 9.7%; ExcitabSOC = 41.6%; ExcitabCON = 39.5%). No group differences between soccer players and generally active individuals were found on the corticomotor inhibition value (p > 0.05), but levels of corticospinal excitability were significantly lower in soccer players (45.1 ± 20.8 vs 85.4 ± 6.2%Mmax, p < 0.0001). Corticomotor inhibition also showed excellent inter-rater reliability (ICC = 0.87). Conclusions Corticomotor inhibition and corticospinal excitability are stable and maintain good degrees of reliability when assessed over different days in soccer players, despite their routine exposure to head impacts. However, based on intra-group reliability and group differences of the levels of excitability, we conclude that corticomotor inhibition is best suited for the evaluation of neuromuscular alterations associated with head impacts in contact sports.


2012 ◽  
Vol 52 (3) ◽  
pp. 142-147
Author(s):  
Hiroshi TOKIMURA ◽  
Shin-ichi IMAMURA ◽  
Kazunori ARITA

2018 ◽  
Vol 120 (4) ◽  
pp. 2011-2019 ◽  
Author(s):  
Adjmal M. E. Sarwary ◽  
Miles Wischnewski ◽  
Dennis J. L. G. Schutter ◽  
Luc P. J. Selen ◽  
W. Pieter Medendorp

Recent computational theories and behavioral observations suggest that motor learning is supported by multiple adaptation processes, operating on different timescales, but direct neural evidence is lacking. We tested this hypothesis by applying transcranial magnetic stimulation over motor cortex in 16 human subjects during a validated reach adaptation task. Motor-evoked potentials (MEPs) and cortical silent periods (CSPs) were recorded from the biceps brachii to assess modulations of corticospinal excitability as indices for corticospinal plasticity. Guided by a two-state adaptation model, we show that the MEP reflects an adaptive process that learns quickly but has poor retention, while the CSP correlates with a process that responds more slowly but retains information well. These results provide a physiological link between models of motor learning and distinct changes in corticospinal excitability. Our findings support the relationship between corticospinal gain modulations and the adaptive processes in motor learning. NEW & NOTEWORTHY Computational theories and behavioral observations suggest that motor learning is supported by multiple adaptation processes, but direct neural evidence is lacking. We tested this hypothesis by applying transcranial magnetic stimulation over human motor cortex during a reach adaptation task. Guided by a two-state adaptation model, we show that the motor-evoked potential reflects a process that adapts and decays quickly, whereas the cortical silent period reflects slow adaptation and decay.


Sign in / Sign up

Export Citation Format

Share Document