scholarly journals When Security Games Hit Traffic: Optimal Traffic Enforcement Under One Sided Uncertainty

Author(s):  
Ariel Rosenfeld ◽  
Sarit Kraus

Efficient traffic enforcement is an essential, yet complex, component in preventing road accidents. In this paper, we present a novel model and an optimizing algorithm for mitigating some of the computational challenges of real-world traffic enforcement allocation in large road networks. Our approach allows for scalable, coupled and non-Markovian optimization of multiple police units and guarantees optimality. In an extensive empirical evaluation we show that our approach favorably compares to several baseline solutions achieving a significant speed-up, using both synthetic and real-world road networks.

Author(s):  
Ariel Rosenfeld ◽  
Oleg Maksimov ◽  
Sarit Kraus

Drones can assist in mitigating traffic accidents by deterring reckless drivers, leveraging their flexible mobility. In the real world, drones are fundamentally limited by their battery/fuel capacity and have to be replenished during long operations. In this paper, we propose a novel approach where police cruisers act as mobile replenishment providers in addition to their traffic enforcement duties. We propose a binary integer linear program for determining the optimal rendezvous cruiser-drone enforcement policy which guarantees that all drones are replenished on time and minimizes the likelihood of accidents. In an extensive empirical evaluation, we first show that human drivers are expected to react to traffic enforcement drones in a similar fashion to how they react to police cruisers using a first-of-its-kind human study in realistic simulated driving. Then, we show that our proposed approach significantly outperforms the common practice of constructing stationary replenishment installations using both synthetic and real world road networks.


Author(s):  
Olivier Dodier ◽  
Magali Ginet ◽  
Frédérique Teissedre ◽  
Fanny Verkampt ◽  
Ronald P. Fisher

Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 380
Author(s):  
Emanuele Cavenaghi ◽  
Gabriele Sottocornola ◽  
Fabio Stella ◽  
Markus Zanker

The Multi-Armed Bandit (MAB) problem has been extensively studied in order to address real-world challenges related to sequential decision making. In this setting, an agent selects the best action to be performed at time-step t, based on the past rewards received by the environment. This formulation implicitly assumes that the expected payoff for each action is kept stationary by the environment through time. Nevertheless, in many real-world applications this assumption does not hold and the agent has to face a non-stationary environment, that is, with a changing reward distribution. Thus, we present a new MAB algorithm, named f-Discounted-Sliding-Window Thompson Sampling (f-dsw TS), for non-stationary environments, that is, when the data streaming is affected by concept drift. The f-dsw TS algorithm is based on Thompson Sampling (TS) and exploits a discount factor on the reward history and an arm-related sliding window to contrast concept drift in non-stationary environments. We investigate how to combine these two sources of information, namely the discount factor and the sliding window, by means of an aggregation function f(.). In particular, we proposed a pessimistic (f=min), an optimistic (f=max), as well as an averaged (f=mean) version of the f-dsw TS algorithm. A rich set of numerical experiments is performed to evaluate the f-dsw TS algorithm compared to both stationary and non-stationary state-of-the-art TS baselines. We exploited synthetic environments (both randomly-generated and controlled) to test the MAB algorithms under different types of drift, that is, sudden/abrupt, incremental, gradual and increasing/decreasing drift. Furthermore, we adapt four real-world active learning tasks to our framework—a prediction task on crimes in the city of Baltimore, a classification task on insects species, a recommendation task on local web-news, and a time-series analysis on microbial organisms in the tropical air ecosystem. The f-dsw TS approach emerges as the best performing MAB algorithm. At least one of the versions of f-dsw TS performs better than the baselines in synthetic environments, proving the robustness of f-dsw TS under different concept drift types. Moreover, the pessimistic version (f=min) results as the most effective in all real-world tasks.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Changixu Cheng ◽  
Xiaomei Song ◽  
Jing Yang ◽  
Xiatian Hu ◽  
Shi Shen ◽  
...  

This paper addresses a special zone design problem for economic census investigators that is motivated by a real-world application. This paper presented a heuristic multikernel growth approach via Constrained Delaunay Triangulation (CDT). This approach not only solved the barriers problem but also dealt with the polygon data in zoning procedure. In addition, it uses a new heuristic method to speed up the zoning process greatly on the premise of the required quality of zoning. At last, two special instances for economic census were performed, highlighting the performance of this approach.


2021 ◽  
Author(s):  
Mohammad Shehab ◽  
Laith Abualigah

Abstract Multi-Verse Optimizer (MVO) algorithm is one of the recent metaheuristic algorithms used to solve various problems in different fields. However, MVO suffers from a lack of diversity which may trapping of local minima, and premature convergence. This paper introduces two steps of improving the basic MVO algorithm. The first step using Opposition-based learning (OBL) in MVO, called OMVO. The OBL aids to speed up the searching and improving the learning technique for selecting a better generation of candidate solutions of basic MVO. The second stage, called OMVOD, combines the disturbance operator (DO) and OMVO to improve the consistency of the chosen solution by providing a chance to solve the given problem with a high fitness value and increase diversity. To test the performance of the proposed models, fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems, and seven CEC 2011 real-world problems were used in both phases of the enhancement. The second step, known as OMVOD, incorporates the disruption operator (DO) and OMVO to improve the accuracy of the chosen solution by giving a chance to solve the given problem with a high fitness value while also increasing variety. Fifteen CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems and seven CEC 2011 real-world problems were used in both phases of the upgrade to assess the accuracy of the proposed models.


Author(s):  
Nguyen Thi Ngoc Anh ◽  
Zucker Jean Daniel ◽  
Nguyen Huu Du ◽  
Alexis Drogoul ◽  
Vo Duc An

Author(s):  
Darren Black ◽  
Nils Jakob Clemmensen ◽  
Mikael B. Skov

Shopping in the real world is becoming an increasingly interactive experience as stores integrate various technologies to support shoppers. Based on an empirical study of supermarket shoppers, the authors designed a mobile context-aware system called the Context-Aware Shopping Trolley (CAST). The purpose of CAST is to support shopping in supermarkets through context-awareness and acquiring user attention, thus, the authors’ interactive trolley guides and directs shoppers in the handling and finding of groceries. An empirical evaluation showed that shoppers using CAST behaved differently than shoppers using a traditional trolley. Specifically, shoppers using CAST exhibited a more uniform pattern of product collection and found products more easily while travelling a shorter distance. As such, the study finds that CAST supported the supermarket shopping activity.


2014 ◽  
Vol 10 (2) ◽  
pp. 18-38 ◽  
Author(s):  
Kung-Jiuan Yang ◽  
Tzung-Pei Hong ◽  
Yuh-Min Chen ◽  
Guo-Cheng Lan

Partial periodic patterns are commonly seen in real-world applications. The major problem of mining partial periodic patterns is the efficiency problem due to a huge set of partial periodic candidates. Although some efficient algorithms have been developed to tackle the problem, the performance of the algorithms significantly drops when the mining parameters are set low. In the past, the authors have adopted the projection-based approach to discover the partial periodic patterns from single-event time series. In this paper, the authors extend it to mine partial periodic patterns from a sequence of event sets which multiple events concurrently occur at the same time stamp. Besides, an efficient pruning and filtering strategy is also proposed to speed up the mining process. Finally, the experimental results on a synthetic dataset and real oil price dataset show the good performance of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document