scholarly journals Systems AI: A Declarative Learning Based Programming Perspective

Author(s):  
Parisa Kordjamshidi ◽  
Dan Roth ◽  
Kristian Kersting

Data-driven approaches are becoming dominant problem-solving techniques in many areas of research and industry. Unfortunately, current technologies do not make such techniques easy to use for application experts who are not fluent in machine learning nor for machine learning experts who aim at testing ideas on real-world data and need to evaluate those as a part of an end-to-end system. We review key efforts made by various AI communities to provide languages for high-level abstractions over learning and reasoning techniques needed for designing complex AI systems. We classify the existing frameworks based on the type of techniques as well as the data and knowledge representations they use, provide a comparative study of the way they address the challenges of programming real-world applications, and highlight some shortcomings and future directions.

2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010056
Author(s):  
Emmanuelle Sylvestre ◽  
Clarisse Joachim ◽  
Elsa Cécilia-Joseph ◽  
Guillaume Bouzillé ◽  
Boris Campillo-Gimenez ◽  
...  

Background Traditionally, dengue surveillance is based on case reporting to a central health agency. However, the delay between a case and its notification can limit the system responsiveness. Machine learning methods have been developed to reduce the reporting delays and to predict outbreaks, based on non-traditional and non-clinical data sources. The aim of this systematic review was to identify studies that used real-world data, Big Data and/or machine learning methods to monitor and predict dengue-related outcomes. Methodology/Principal findings We performed a search in PubMed, Scopus, Web of Science and grey literature between January 1, 2000 and August 31, 2020. The review (ID: CRD42020172472) focused on data-driven studies. Reviews, randomized control trials and descriptive studies were not included. Among the 119 studies included, 67% were published between 2016 and 2020, and 39% used at least one novel data stream. The aim of the included studies was to predict a dengue-related outcome (55%), assess the validity of data sources for dengue surveillance (23%), or both (22%). Most studies (60%) used a machine learning approach. Studies on dengue prediction compared different prediction models, or identified significant predictors among several covariates in a model. The most significant predictors were rainfall (43%), temperature (41%), and humidity (25%). The two models with the highest performances were Neural Networks and Decision Trees (52%), followed by Support Vector Machine (17%). We cannot rule out a selection bias in our study because of our two main limitations: we did not include preprints and could not obtain the opinion of other international experts. Conclusions/Significance Combining real-world data and Big Data with machine learning methods is a promising approach to improve dengue prediction and monitoring. Future studies should focus on how to better integrate all available data sources and methods to improve the response and dengue management by stakeholders.


AI Magazine ◽  
2008 ◽  
Vol 29 (3) ◽  
pp. 93 ◽  
Author(s):  
Prithviraj Sen ◽  
Galileo Namata ◽  
Mustafa Bilgic ◽  
Lise Getoor ◽  
Brian Galligher ◽  
...  

Many real-world applications produce networked data such as the world-wide web (hypertext documents connected via hyperlinks), social networks (for example, people connected by friendship links), communication networks (computers connected via communication links) and biological networks (for example, protein interaction networks). A recent focus in machine learning research has been to extend traditional machine learning classification techniques to classify nodes in such networks. In this article, we provide a brief introduction to this area of research and how it has progressed during the past decade. We introduce four of the most widely used inference algorithms for classifying networked data and empirically compare them on both synthetic and real-world data.


2021 ◽  
pp. 1-24
Author(s):  
Avidit Acharya ◽  
Kirk Bansak ◽  
Jens Hainmueller

Abstract We introduce a constrained priority mechanism that combines outcome-based matching from machine learning with preference-based allocation schemes common in market design. Using real-world data, we illustrate how our mechanism could be applied to the assignment of refugee families to host country locations, and kindergarteners to schools. Our mechanism allows a planner to first specify a threshold $\bar g$ for the minimum acceptable average outcome score that should be achieved by the assignment. In the refugee matching context, this score corresponds to the probability of employment, whereas in the student assignment context, it corresponds to standardized test scores. The mechanism is a priority mechanism that considers both outcomes and preferences by assigning agents (refugee families and students) based on their preferences, but subject to meeting the planner’s specified threshold. The mechanism is both strategy-proof and constrained efficient in that it always generates a matching that is not Pareto dominated by any other matching that respects the planner’s threshold.


2022 ◽  
Vol 54 (9) ◽  
pp. 1-36
Author(s):  
Dylan Chou ◽  
Meng Jiang

Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.


2021 ◽  
pp. 026638212110619
Author(s):  
Sharon Richardson

During the past two decades, there have been a number of breakthroughs in the fields of data science and artificial intelligence, made possible by advanced machine learning algorithms trained through access to massive volumes of data. However, their adoption and use in real-world applications remains a challenge. This paper posits that a key limitation in making AI applicable has been a failure to modernise the theoretical frameworks needed to evaluate and adopt outcomes. Such a need was anticipated with the arrival of the digital computer in the 1950s but has remained unrealised. This paper reviews how the field of data science emerged and led to rapid breakthroughs in algorithms underpinning research into artificial intelligence. It then discusses the contextual framework now needed to advance the use of AI in real-world decisions that impact human lives and livelihoods.


2017 ◽  
Vol 19 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Jun Li ◽  
Eric M. Simmons ◽  
Martin D. Eastgate

A predictive analytics approach to understanding process mass intensity (PMI) is described. This method leverages real-world data to predict probable PMI outcomes for a potential synthetic route and to compare PMI outcomes to the summation of prior experience.


Sign in / Sign up

Export Citation Format

Share Document