scholarly journals Deep Adversarial Social Recommendation

Author(s):  
Wenqi Fan ◽  
Tyler Derr ◽  
Yao Ma ◽  
Jianping Wang ◽  
Jiliang Tang ◽  
...  

Recent years have witnessed rapid developments on social recommendation techniques for improving the performance of recommender systems due to the growing influence of social networks to our daily life. The majority of existing social recommendation methods unify user representation for the user-item interactions (item domain) and user-user connections (social domain). However, it may restrain user representation learning in each respective domain, since users behave and interact differently in the two domains, which makes their representations to be heterogeneous. In addition, most of traditional recommender systems can not efficiently optimize these objectives, since they utilize negative sampling technique which is unable to provide enough informative guidance towards the training during the optimization process. In this paper, to address the aforementioned challenges, we propose a novel deep adversarial social recommendation framework DASO. It adopts a bidirectional mapping method to transfer users' information between social domain and item domain using adversarial learning. Comprehensive experiments on two real-world datasets show the effectiveness of the proposed framework.

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 450 ◽  
Author(s):  
Xinyu Huang ◽  
Dongming Chen ◽  
Dongqi Wang ◽  
Tao Ren

Social network analysis is a multidisciplinary research covering informatics, mathematics, sociology, management, psychology, etc. In the last decade, the development of online social media has provided individuals with a fascinating platform of sharing knowledge and interests. The emergence of various social networks has greatly enriched our daily life, and simultaneously, it brings a challenging task to identify influencers among multiple social networks. The key problem lies in the various interactions among individuals and huge data scale. Aiming at solving the problem, this paper employs a general multilayer network model to represent the multiple social networks, and then proposes the node influence indicator merely based on the local neighboring information. Extensive experiments on 21 real-world datasets are conducted to verify the performance of the proposed method, which shows superiority to the competitors. It is of remarkable significance in revealing the evolutions in social networks and we hope this work will shed light for more and more forthcoming researchers to further explore the uncharted part of this promising field.


2022 ◽  
Vol 40 (1) ◽  
pp. 1-26
Author(s):  
Shanlei Mu ◽  
Yaliang Li ◽  
Wayne Xin Zhao ◽  
Siqing Li ◽  
Ji-Rong Wen

In recommender systems, it is essential to understand the underlying factors that affect user-item interaction. Recently, several studies have utilized disentangled representation learning to discover such hidden factors from user-item interaction data, which shows promising results. However, without any external guidance signal, the learned disentangled representations lack clear meanings, and are easy to suffer from the data sparsity issue. In light of these challenges, we study how to leverage knowledge graph (KG) to guide the disentangled representation learning in recommender systems. The purpose for incorporating KG is twofold, making the disentangled representations interpretable and resolving data sparsity issue. However, it is not straightforward to incorporate KG for improving disentangled representations, because KG has very different data characteristics compared with user-item interactions. We propose a novel K nowledge-guided D isentangled R epresentations approach ( KDR ) to utilizing KG to guide the disentangled representation learning in recommender systems. The basic idea, is to first learn more interpretable disentangled dimensions (explicit disentangled representations) based on structural KG, and then align implicit disentangled representations learned from user-item interaction with the explicit disentangled representations. We design a novel alignment strategy based on mutual information maximization. It enables the KG information to guide the implicit disentangled representation learning, and such learned disentangled representations will correspond to semantic information derived from KG. Finally, the fused disentangled representations are optimized to improve the recommendation performance. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed model in terms of both performance and interpretability.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sheng Bin ◽  
Gengxin Sun

With the widespread use of social networks, social recommendation algorithms that add social relationships between users to recommender systems have been widely applied. Existing social recommendation algorithms only introduced one type of social relationship to the recommendation system, but in reality, there are often multiple social relationships among users. In this paper, a new matrix factorization recommendation algorithm combined with multiple social relationships is proposed. Through experiment results analysis on the Epinions dataset, the proposed matrix factorization recommendation algorithm has a significant improvement over the traditional and matrix factorization recommendation algorithms that integrate a single social relationship.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Rongmei Zhao ◽  
Xi Xiong ◽  
Xia Zu ◽  
Shenggen Ju ◽  
Zhongzhi Li ◽  
...  

Search engines and recommendation systems are an essential means of solving information overload, and recommendation algorithms are the core of recommendation systems. Recently, the recommendation algorithm of graph neural network based on social network has greatly improved the quality of the recommendation system. However, these methods paid far too little attention to the heterogeneity of social networks. Indeed, ignoring the heterogeneity of connections between users and interactions between users and items may seriously affect user representation. In this paper, we propose a hierarchical attention recommendation system (HA-RS) based on mask social network, combining social network information and user behavior information, which improves not only the accuracy of recommendation but also the flexibility of the network. First, learning the node representation in the item domain through the proposed Context-NE model and then the feature information of neighbor nodes in social domain is aggregated through the hierarchical attention network. It can fuse the information in the heterogeneous network (social domain and item domain) through the above two steps. We propose the mask mechanism to solve the cold-start issues for users and items by randomly masking some nodes in the item domain and in the social domain during the training process. Comprehensive experiments on four real-world datasets show the effectiveness of the proposed method.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 115
Author(s):  
Yongjun Jing ◽  
Hao Wang ◽  
Kun Shao ◽  
Xing Huo

Trust prediction is essential to enhancing reliability and reducing risk from the unreliable node, especially for online applications in open network environments. An essential fact in trust prediction is to measure the relation of both the interacting entities accurately. However, most of the existing methods infer the trust relation between interacting entities usually rely on modeling the similarity between nodes on a graph and ignore semantic relation and the influence of negative links (e.g., distrust relation). In this paper, we proposed a relation representation learning via signed graph mutual information maximization (called SGMIM). In SGMIM, we incorporate a translation model and positive point-wise mutual information to enhance the relation representations and adopt Mutual Information Maximization to align the entity and relation semantic spaces. Moreover, we further develop a sign prediction model for making accurate trust predictions. We conduct link sign prediction in trust networks based on learned the relation representation. Extensive experimental results in four real-world datasets on trust prediction task show that SGMIM significantly outperforms state-of-the-art baseline methods.


Author(s):  
Shengsheng Qian ◽  
Jun Hu ◽  
Quan Fang ◽  
Changsheng Xu

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.


2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Ninghan Chen ◽  
Zhiqiang Zhong ◽  
Jun Pang

The outbreak of the COVID-19 led to a burst of information in major online social networks (OSNs). Facing this constantly changing situation, OSNs have become an essential platform for people expressing opinions and seeking up-to-the-minute information. Thus, discussions on OSNs may become a reflection of reality. This paper aims to figure out how Twitter users in the Greater Region (GR) and related countries react differently over time through conducting a data-driven exploratory study of COVID-19 information using machine learning and representation learning methods. We find that tweet volume and COVID-19 cases in GR and related countries are correlated, but this correlation only exists in a particular period of the pandemic. Moreover, we plot the changing of topics in each country and region from 22 January 2020 to 5 June 2020, figuring out the main differences between GR and related countries.


Author(s):  
Lakshmikanth Paleti ◽  
P. Radha Krishna ◽  
J.V.R. Murthy

Recommendation systems provide reliable and relevant recommendations to users and also enable users’ trust on the website. This is achieved by the opinions derived from reviews, feedbacks and preferences provided by the users when the product is purchased or viewed through social networks. This integrates interactions of social networks with recommendation systems which results in the behavior of users and user’s friends. The techniques used so far for recommendation systems are traditional, based on collaborative filtering and content based filtering. This paper provides a novel approach called User-Opinion-Rating (UOR) for building recommendation systems by taking user generated opinions over social networks as a dimension. Two tripartite graphs namely User-Item-Rating and User-Item-Opinion are constructed based on users’ opinion on items along with their ratings. Proposed approach quantifies the opinions of users and results obtained reveal the feasibility.


Sign in / Sign up

Export Citation Format

Share Document