scholarly journals Flow-Based Network Creation Games

Author(s):  
Hagen Echzell ◽  
Tobias Friedrich ◽  
Pascal Lenzner ◽  
Anna Melnichenko

Network Creation Games(NCGs) model the creation of decentralized communication networks like the Internet. In such games strategic agents corresponding to network nodes selfishly decide with whom to connect to optimize some objective function. Past research intensively analyzed models where the agents strive for a central position in the network. This models agents optimizing the network for low-latency applications like VoIP. However, with today's abundance of streaming services it is important to ensure that the created network can satisfy the increased bandwidth demand. To the best of our knowledge, this natural problem of the decentralized strategic creation of networks with sufficient bandwidth has not yet been studied. We introduce Flow-Based NCGs where the selfish agents focus on bandwidth instead of latency. In essence, budget-constrained agents create network links to maximize their minimum or average network flow value to all other network nodes. Equivalently, this can also be understood as agents who create links to increase their connectivity and thus also the robustness of the network. For this novel type of NCG we prove that pure Nash equilibria exist, we give a simple algorithm for computing optimal networks, we show that the Price of Stability is 1 and we prove an (almost) tight bound of 2 on the Price of Anarchy. Last but not least, we show that our models do not admit a potential function.

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 35
Author(s):  
Davide Bilò ◽  
Luciano Gualà ◽  
Stefano Leucci ◽  
Guido Proietti

Network creation games have been extensively used as mathematical models to capture the key aspects of the decentralized process that leads to the formation of interconnected communication networks by selfish agents. In these games, each user of the network is identified by a node and selects which link to activate by strategically balancing his/her building cost with his/her usage cost (which is a function of the distances towards the other player in the network to be built). In these games, a widespread assumption is that players have a common and complete information about the evolving network topology. This is only realistic for small-scale networks as, when the network size grows, it quickly becomes impractical for the single users to gather such a global and fine-grained knowledge of the network in which they are embedded. In this work, we weaken this assumption, by only allowing players to have a partial view of the network. To this aim, we borrow three popular traceroute-based knowledge models used in network discovery: (i) distance vector, (ii) shortest-path tree view, and (iii) layered view. We settle many of the classical game theoretic questions in all of the above models. More precisely, we introduce a suitable (and unifying) equilibrium concept which we then use to study the convergence of improving and best response dynamics, the computational complexity of computing a best response, and to provide matching upper and lower bounds to the price of anarchy.


2021 ◽  
Author(s):  
Hao Huang ◽  
Yaoyu Ma ◽  
Mengxian Chen ◽  
Enjie Zhang ◽  
Linghong Jiang ◽  
...  

2010 ◽  
Vol 11 (03n04) ◽  
pp. 97-120 ◽  
Author(s):  
VITTORIO BILÒ

We consider the problem of sharing the cost of multicast transmissions in non-cooperative undirected networks where a set of receivers R wants to be connected to a common source s. The set of choices available to each receiver r ∈ R is represented by the set of all (s, r)-paths in the network. Given the choices performed by all the receivers, a public known cost sharing method determines the cost share to be charged to each of them. Receivers are selfish agents aiming to obtain the transmission at the minimum cost share and their interactions create a non-cooperative game. Devising cost sharing methods yielding games whose price of anarchy (price of stability), defined as the worst-case (best-case) ratio between the cost of a Nash equilibrium and that of an optimal solution, is not too high is thus of fundamental importance in non-cooperative network design. Moreover, since cost sharing games naturally arise in socio-economical contests, it is convenient for a cost sharing method to meet some constraining properties. In this paper, we first define several such properties and analyze their impact on the prices of anarchy and stability. We also reconsider all the methods known so far by classifying them according to which properties they satisfy and giving the first non-trivial lower bounds on their price of stability. Finally, we propose a new method, namely the free-riders method, which admits a polynomial time algorithm for computing a pure Nash equilibrium whose cost is at most twice the optimal one. Some of the ideas characterizing our approach have been independently proposed in Ref. 10.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4895
Author(s):  
Maurício R. Silva ◽  
Elitelma S. Souza ◽  
Pablo J. Alsina ◽  
Deyvid L. Leite ◽  
Mateus R. Morais ◽  
...  

This paper presents a communication network for a squadron of unmanned aerial vehicles (UAVs) to be used in the scanning rocket impact area for Barreira do Inferno Launch Center—CLBI (Rio Grande do Norte, Brazil), aiming at detecting intruder boats. The main features of communication networks associated with multi-UAV systems are presented. This system sends information through Wireless Sensor Networks (WSN). After comparing and analyzing area scanning strategies, it presents the specification of a data communication network architecture for a squadron of UAVs within a sensor network using XBee Pro 900HP S3B modules. A brief description is made about the initial information from the construction of the system. The embedded hardware and the design procedure of a dedicated communication antenna to the XBee modules are presented. In order to evaluate the performance of the proposed architecture in terms of robustness and reliability, a set of experimental tests in different communication scenarios is carried out. Network management software is employed to measure the throughput, packet loss and other performance indicators in the communication links between the different network nodes. Experimental results allow verifying the quality and performance of the network nodes, as well as the reliability of the communication links, assessing signal received quality, range and latency.


2018 ◽  
Vol 44 ◽  
pp. 00020 ◽  
Author(s):  
Alexey Busygin ◽  
Maxim Kalinin ◽  
Artem Konoplev

This paper considers the tasks of supporting the connectivity of nodes in communication networks of unmanned transport (VANET/MANET-networks). High dynamics, decentralization and absence of hierarchy in the networks of this type actualize the task of supporting the connectivity of nodes with software-configurable security services, providing the network protection. It is offered to use a Blockchain technology based system for VANET/MANET network topologyand authentication data distribution and storage. The issue of unlimited blockchain growth preventing this method from being implemented in VANET/MANET networks is considered. The existing solutions of this issueare analyzed and drawbacks are identified. A notion of blockchain with floating genesis block is introduced and its advantages over similar ideas are demonstrated thus allowing it to be used to resolve the issue of continuously growing blockchain within the systems with stalingtransactions as a whole and in VANET/MANET networks in particular.


1957 ◽  
Vol 9 ◽  
pp. 210-218 ◽  
Author(s):  
L. R. Ford ◽  
D. R. Fulkerson

The network-flow problem, originally posed by T. Harris of the Rand Corporation, has been discussed from various viewpoints in (1; 2; 7; 16). The problem arises naturally in the study of transportation networks; it may be stated in the following way. One is given a network of directed arcs and nodes with two distinguished nodes, called source and sink, respectively. All other nodes are called intermediate. Each directed arc in the network has associated with it a nonnegative integer, its flow capacity. Source arcs may be assumed to be directed away from the source, sink arcs into the sink. Subject to the conditions that the flow in an arc is in the direction of the arc and does not exceed its capacity, and that the total flow into any intermediate node is equal to the flow out of it, it is desired to find a maximal flow from source to sink in the network, i.e., a flow which maximizes the sum of the flows in source (or sink) arcs.Thus, if we let P1 be the source, Pn the sink, we are required to find xij (i,j =1, . . . , w) which maximize


2009 ◽  
Vol 8 (2) ◽  
pp. 1-20 ◽  
Author(s):  
Erik D. Demaine ◽  
Mohammadtaghi Hajiaghayi ◽  
Hamid Mahini ◽  
Morteza Zadimoghaddam

2013 ◽  
Vol 53 (1) ◽  
pp. 53-72 ◽  
Author(s):  
Matúš Mihalák ◽  
Jan Christoph Schlegel

Author(s):  
Vittorio Bilò ◽  
Angelo Fanelli ◽  
Michele Flammini ◽  
Gianpiero Monaco ◽  
Luca Moscardelli

The generalized group activity selection problem (GGASP) consists in assigning agents to activities according to their preferences, which depend on both the activity and the set of its participants. We consider additively separable GGASPs, where every agent has a separate valuation for each activity as well as for any other agent, and her overall utility is given by the sum of the valuations she has for the selected activity and its participants. Depending on the nature of the agents' valuations, nine different variants of the problem arise. We completely characterize the complexity of computing a social optimum and provide approximation algorithms for the NP-hard cases. We also focus on Nash stable outcomes, for which we give some complexity results and a full picture of the related performance by providing tights bounds on both the price of anarchy and the price of stability.


Author(s):  
D. A. Martínez ◽  
E. Mojica-Nava ◽  
K. Watson ◽  
T. Usländer

<p><strong>Abstract.</strong> From an IoT point of view, the continuous growth of cheap and versatile sensor technologies has generated a massive data flow in communication networks, which most of the time carries unnecessary or redundant information that requires larger storage centers and more time to process and analyze data. Most of this redundancy is due to fact that network nodes are unable to identify environmental cues showing measurement changes to be considered and instead remain at a static location getting the same data. In this work we propose a multi-agent learning framework based on two theoretical tools. Firstly, we use Gaussian Process Regression (GPR) to make each node capable of getting information from the environment based on its current measurement and the measurements taken by its neighbors. Secondly, we use the rate distortion function to define a boundary where the information coming from the environment is neither redundant nor misunderstood. Finally, we show how the framework is applied in a mobile sensor network in which sensors decide to be more or less exploratory by means of the parameter s of the Blahut-Arimoto algorithm, and how it affects the measurement coverage in a spatial area being sensed.</p>


Sign in / Sign up

Export Citation Format

Share Document