scholarly journals Unsupervised Representation Learning by Predicting Random Distances

Author(s):  
Hu Wang ◽  
Guansong Pang ◽  
Chunhua Shen ◽  
Congbo Ma

Deep neural networks have gained great success in a broad range of tasks due to its remarkable capability to learn semantically rich features from high-dimensional data. However, they often require large-scale labelled data to successfully learn such features, which significantly hinders their adaption in unsupervised learning tasks, such as anomaly detection and clustering, and limits their applications to critical domains where obtaining massive labelled data is prohibitively expensive. To enable unsupervised learning on those domains, in this work we propose to learn features without using any labelled data by training neural networks to predict data distances in a randomly projected space. Random mapping is a theoretically proven approach to obtain approximately preserved distances. To well predict these distances, the representation learner is optimised to learn genuine class structures that are implicitly embedded in the randomly projected space. Empirical results on 19 real-world datasets show that our learned representations substantially outperform a few state-of-the-art methods for both anomaly detection and clustering tasks. Code is available at: \url{https://git.io/RDP}

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


2021 ◽  
Author(s):  
Yingheng Wang ◽  
Yaosen Min ◽  
Erzhuo Shao ◽  
Ji Wu

ABSTRACTLearning generalizable, transferable, and robust representations for molecule data has always been a challenge. The recent success of contrastive learning (CL) for self-supervised graph representation learning provides a novel perspective to learn molecule representations. The most prevailing graph CL framework is to maximize the agreement of representations in different augmented graph views. However, existing graph CL frameworks usually adopt stochastic augmentations or schemes according to pre-defined rules on the input graph to obtain different graph views in various scales (e.g. node, edge, and subgraph), which may destroy topological semantemes and domain prior in molecule data, leading to suboptimal performance. Therefore, designing parameterized, learnable, and explainable augmentation is quite necessary for molecular graph contrastive learning. A well-designed parameterized augmentation scheme can preserve chemically meaningful structural information and intrinsically essential attributes for molecule graphs, which helps to learn representations that are insensitive to perturbation on unimportant atoms and bonds. In this paper, we propose a novel Molecular Graph Contrastive Learning with Parameterized Explainable Augmentations, MolCLE for brevity, that self-adaptively incorporates chemically significative information from both topological and semantic aspects of molecular graphs. Specifically, we apply deep neural networks to parameterize the augmentation process for both the molecular graph topology and atom attributes, to highlight contributive molecular substructures and recognize underlying chemical semantemes. Comprehensive experiments on a variety of real-world datasets demonstrate that our proposed method consistently outperforms compared baselines, which verifies the effectiveness of the proposed framework. Detailedly, our self-supervised MolCLE model surpasses many supervised counterparts, and meanwhile only uses hundreds of thousands of parameters to achieve comparative results against the state-of-the-art baseline, which has tens of millions of parameters. We also provide detailed case studies to validate the explainability of augmented graph views.CCS CONCEPTS• Mathematics of computing → Graph algorithms; • Applied computing → Bioinformatics; • Computing methodologies → Neural networks; Unsupervised learning.


Author(s):  
Jing Huang ◽  
Jie Yang

Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains. Despite the success of Graph Neural Networks (GNNs) for graph representation learning, how to adapt the powerful GNN-variants directly into hypergraphs remains a challenging problem. In this paper, we propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks, which can generalize general GNN models into hypergraphs. In this framework, meticulously-designed architectures aiming to deepen GNNs can also be incorporated into hypergraphs with the least effort. Extensive experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets, which outperform the state-of-the-art approaches with a large margin. Especially for the DBLP dataset, we increase the accuracy from 77.4% to 88.8% in the semi-supervised hypernode classification task. We further prove that the proposed message-passing based UniGNN models are at most as powerful as the 1-dimensional Generalized Weisfeiler-Leman (1-GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs. Our code is available at https://github.com/OneForward/UniGNN.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nouar AlDahoul ◽  
Hezerul Abdul Karim ◽  
Abdulaziz Saleh Ba Wazir

AbstractNetwork Anomaly Detection is still an open challenging task that aims to detect anomalous network traffic for security purposes. Usually, the network traffic data are large-scale and imbalanced. Additionally, they have noisy labels. This paper addresses the previous challenges and utilizes million-scale and highly imbalanced ZYELL’s dataset. We propose to train deep neural networks with class weight optimization to learn complex patterns from rare anomalies observed from the traffic data. This paper proposes a novel model fusion that combines two deep neural networks including binary normal/attack classifier and multi-attacks classifier. The proposed solution can detect various network attacks such as Distributed Denial of Service (DDOS), IP probing, PORT probing, and Network Mapper (NMAP) probing. The experiments conducted on a ZYELL’s real-world dataset show promising performance. It was found that the proposed approach outperformed the baseline model in terms of average macro Fβ score and false alarm rate by 17% and 5.3%, respectively.


Author(s):  
Zhijun Chen ◽  
Huimin Wang ◽  
Hailong Sun ◽  
Pengpeng Chen ◽  
Tao Han ◽  
...  

End-to-end learning from crowds has recently been introduced as an EM-free approach to training deep neural networks directly from noisy crowdsourced annotations. It models the relationship between true labels and annotations with a specific type of neural layer, termed as the crowd layer, which can be trained using pure backpropagation. Parameters of the crowd layer, however, can hardly be interpreted as annotator reliability, as compared with the more principled probabilistic approach. The lack of probabilistic interpretation further prevents extensions of the approach to account for important factors of annotation processes, e.g., instance difficulty. This paper presents SpeeLFC, a structured probabilistic model that incorporates the constraints of probability axioms for parameters of the crowd layer, which allows to explicitly model annotator reliability while benefiting from the end-to-end training of neural networks. Moreover, we propose SpeeLFC-D, which further takes into account instance difficulty. Extensive validation on real-world datasets shows that our methods improve the state-of-the-art.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wanheng Liu ◽  
Ling Yin ◽  
Cong Wang ◽  
Fulin Liu ◽  
Zhiyu Ni

In this paper, a novel medical knowledge graph in Chinese approach applied in smart healthcare based on IoT and WoT is presented, using deep neural networks combined with self-attention to generate medical knowledge graph to make it more convenient for performing disease diagnosis and providing treatment advisement. Although great success has been made in the medical knowledge graph in recent studies, the issue of comprehensive medical knowledge graph in Chinese appropriate for telemedicine or mobile devices have been ignored. In our study, it is a working theory which is based on semantic mobile computing and deep learning. When several experiments have been carried out, it is demonstrated that it has better performance in generating various types of medical knowledge graph in Chinese, which is similar to that of the state-of-the-art. Also, it works well in the accuracy and comprehensive, which is much higher and highly consisted with the predictions of the theoretical model. It proves to be inspiring and encouraging that our work involving studies of medical knowledge graph in Chinese, which can stimulate the smart healthcare development.


2020 ◽  
Vol 67 ◽  
pp. 581-606 ◽  
Author(s):  
Lemao Liu ◽  
Andrew Finch ◽  
Masao Utiyama ◽  
Eiichiro Sumita

Recurrent neural networks are extremely appealing for sequence-to-sequence learning tasks. Despite their great success, they typically suffer from a shortcoming: they are prone to generate unbalanced targets with good prefixes but bad suffixes, and thus performance suffers when dealing with long sequences. We propose a simple yet effective approach to overcome this shortcoming. Our approach relies on the agreement between a pair of target-directional RNNs, which generates more balanced targets. In addition, we develop two efficient approximate search methods for agreement that are empirically shown to be almost optimal in terms of either sequence level or non-sequence level metrics. Extensive experiments were performed on three standard sequence-to-sequence transduction tasks: machine transliteration, grapheme-to-phoneme transformation and machine translation. The results show that the proposed approach achieves consistent and substantial improvements, compared to many state-of-the-art systems.


Author(s):  
Bruno Roy ◽  
Pierre Poulin ◽  
Eric Paquette

We present a novel up-resing technique for generating high-resolution liquids based on scene flow estimation using deep neural networks. Our approach infers and synthesizes small- and large-scale details solely from a low-resolution particle-based liquid simulation. The proposed network leverages neighborhood contributions to encode inherent liquid properties throughout convolutions. We also propose a particle-based approach to interpolate between liquids generated from varying simulation discretizations using a state-of-the-art bidirectional optical flow solver method for fluids in addition with a novel key-event topological alignment constraint. In conjunction with the neighborhood contributions, our loss formulation allows the inference model throughout epochs to reward important differences in regard to significant gaps in simulation discretizations. Even when applied in an untested simulation setup, our approach is able to generate plausible high-resolution details. Using this interpolation approach and the predicted displacements, our approach combines the input liquid properties with the predicted motion to infer semi-Lagrangian advection. We furthermore showcase how the proposed interpolation approach can facilitate generating large simulation datasets with a subset of initial condition parameters.


Author(s):  
Guangtao Wang ◽  
Rex Ying ◽  
Jing Huang ◽  
Jure Leskovec

Self-attention mechanism in graph neural networks (GNNs) led to state-of-the-art performance on many graph representation learning tasks. Currently, at every layer, attention is computed between connected pairs of nodes and depends solely on the representation of the two nodes. However, such attention mechanism does not account for nodes that are not directly connected but provide important network context. Here we propose Multi-hop Attention Graph Neural Network (MAGNA), a principled way to incorporate multi-hop context information into every layer of attention computation. MAGNA diffuses the attention scores across the network, which increases the receptive field for every layer of the GNN. Unlike previous approaches, MAGNA uses a diffusion prior on attention values, to efficiently account for all paths between the pair of disconnected nodes. We demonstrate in theory and experiments that MAGNA captures large-scale structural information in every layer, and has a low-pass effect that eliminates noisy high-frequency information from graph data. Experimental results on node classification as well as the knowledge graph completion benchmarks show that MAGNA achieves state-of-the-art results: MAGNA achieves up to 5.7% relative error reduction over the previous state-of-the-art on Cora, Citeseer, and Pubmed. MAGNA also obtains the best performance on a large-scale Open Graph Benchmark dataset. On knowledge graph completion MAGNA advances state-of-the-art on WN18RR and FB15k-237 across four different performance metrics.


Sign in / Sign up

Export Citation Format

Share Document