scholarly journals End-to-End Transition-Based Online Dialogue Disentanglement

Author(s):  
Hui Liu ◽  
Zhan Shi ◽  
Jia-Chen Gu ◽  
Quan Liu ◽  
Si Wei ◽  
...  

Dialogue disentanglement aims to separate intermingled messages into detached sessions. The existing research focuses on two-step architectures, in which a model first retrieves the relationships between two messages and then divides the message stream into separate clusters. Almost all existing work puts significant efforts on selecting features for message-pair classification and clustering, while ignoring the semantic coherence within each session. In this paper, we introduce the first end-to- end transition-based model for online dialogue disentanglement. Our model captures the sequential information of each session as the online algorithm proceeds on processing a dialogue. The coherence in a session is hence modeled when messages are sequentially added into their best-matching sessions. Meanwhile, the research field still lacks data for studying end-to-end dialogue disentanglement, so we construct a large-scale dataset by extracting coherent dialogues from online movie scripts. We evaluate our model on both the dataset we developed and the publicly available Ubuntu IRC dataset [Kummerfeld et al., 2019]. The results show that our model significantly outperforms the existing algorithms. Further experiments demonstrate that our model better captures the sequential semantics and obtains more coherent disentangled sessions.

2022 ◽  
Vol 19 (1) ◽  
pp. 21-44
Author(s):  
Dorothea Alewell ◽  
Karla Brinck ◽  
Tobias Moll

Although research has established a positive link between spirituality or religiousness and job satisfaction, this influence’s pathways remain a ‘black box’. Whether it is an effect of a trait- relationship or of a need-satisfaction-relationship remains an open question. Additionally, data and results for West European countries are largely missing. Following King and Williamson (2005), and with a large-scale dataset for Germany (N = 2,551), we empirically assess the link between religiousness and job satisfaction, considering individual employees’ desire to express religiousness and actual expression at work in a serial mediation model, scrutinizing also the influences of discrimination experiences and perceived employers’ stances on religiousness at work. Results strongly support the needs-satisfaction perspective, implying high relevance of workplace spirituality for human resource management (HRM) but also of the research field of management, spirituality and religion in general. Contrary to our expectations, experiences of religious-based discrimination and the perception of a negative employer stance influence the desire to express religiousness at work and de facto expressions positively.


2020 ◽  
Author(s):  
Ryo Masumura ◽  
Naoki Makishima ◽  
Mana Ihori ◽  
Akihiko Takashima ◽  
Tomohiro Tanaka ◽  
...  

Author(s):  
Jin Zhou ◽  
Qing Zhang ◽  
Jian-Hao Fan ◽  
Wei Sun ◽  
Wei-Shi Zheng

AbstractRecent image aesthetic assessment methods have achieved remarkable progress due to the emergence of deep convolutional neural networks (CNNs). However, these methods focus primarily on predicting generally perceived preference of an image, making them usually have limited practicability, since each user may have completely different preferences for the same image. To address this problem, this paper presents a novel approach for predicting personalized image aesthetics that fit an individual user’s personal taste. We achieve this in a coarse to fine manner, by joint regression and learning from pairwise rankings. Specifically, we first collect a small subset of personal images from a user and invite him/her to rank the preference of some randomly sampled image pairs. We then search for the K-nearest neighbors of the personal images within a large-scale dataset labeled with average human aesthetic scores, and use these images as well as the associated scores to train a generic aesthetic assessment model by CNN-based regression. Next, we fine-tune the generic model to accommodate the personal preference by training over the rankings with a pairwise hinge loss. Experiments demonstrate that our method can effectively learn personalized image aesthetic preferences, clearly outperforming state-of-the-art methods. Moreover, we show that the learned personalized image aesthetic benefits a wide variety of applications.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Anselmo Ferreira ◽  
Ehsan Nowroozi ◽  
Mauro Barni

The possibility of carrying out a meaningful forensic analysis on printed and scanned images plays a major role in many applications. First of all, printed documents are often associated with criminal activities, such as terrorist plans, child pornography, and even fake packages. Additionally, printing and scanning can be used to hide the traces of image manipulation or the synthetic nature of images, since the artifacts commonly found in manipulated and synthetic images are gone after the images are printed and scanned. A problem hindering research in this area is the lack of large scale reference datasets to be used for algorithm development and benchmarking. Motivated by this issue, we present a new dataset composed of a large number of synthetic and natural printed face images. To highlight the difficulties associated with the analysis of the images of the dataset, we carried out an extensive set of experiments comparing several printer attribution methods. We also verified that state-of-the-art methods to distinguish natural and synthetic face images fail when applied to print and scanned images. We envision that the availability of the new dataset and the preliminary experiments we carried out will motivate and facilitate further research in this area.


Author(s):  
Anil S. Baslamisli ◽  
Partha Das ◽  
Hoang-An Le ◽  
Sezer Karaoglu ◽  
Theo Gevers

AbstractIn general, intrinsic image decomposition algorithms interpret shading as one unified component including all photometric effects. As shading transitions are generally smoother than reflectance (albedo) changes, these methods may fail in distinguishing strong photometric effects from reflectance variations. Therefore, in this paper, we propose to decompose the shading component into direct (illumination) and indirect shading (ambient light and shadows) subcomponents. The aim is to distinguish strong photometric effects from reflectance variations. An end-to-end deep convolutional neural network (ShadingNet) is proposed that operates in a fine-to-coarse manner with a specialized fusion and refinement unit exploiting the fine-grained shading model. It is designed to learn specific reflectance cues separated from specific photometric effects to analyze the disentanglement capability. A large-scale dataset of scene-level synthetic images of outdoor natural environments is provided with fine-grained intrinsic image ground-truths. Large scale experiments show that our approach using fine-grained shading decompositions outperforms state-of-the-art algorithms utilizing unified shading on NED, MPI Sintel, GTA V, IIW, MIT Intrinsic Images, 3DRMS and SRD datasets.


2021 ◽  
Vol 13 (5) ◽  
pp. 905
Author(s):  
Chuyi Wu ◽  
Feng Zhang ◽  
Junshi Xia ◽  
Yichen Xu ◽  
Guoqing Li ◽  
...  

The building damage status is vital to plan rescue and reconstruction after a disaster and is also hard to detect and judge its level. Most existing studies focus on binary classification, and the attention of the model is distracted. In this study, we proposed a Siamese neural network that can localize and classify damaged buildings at one time. The main parts of this network are a variety of attention U-Nets using different backbones. The attention mechanism enables the network to pay more attention to the effective features and channels, so as to reduce the impact of useless features. We train them using the xBD dataset, which is a large-scale dataset for the advancement of building damage assessment, and compare their result balanced F (F1) scores. The score demonstrates that the performance of SEresNeXt with an attention mechanism gives the best performance, with the F1 score reaching 0.787. To improve the accuracy, we fused the results and got the best overall F1 score of 0.792. To verify the transferability and robustness of the model, we selected the dataset on the Maxar Open Data Program of two recent disasters to investigate the performance. By visual comparison, the results show that our model is robust and transferable.


2021 ◽  
Vol 54 (2) ◽  
pp. 1-36
Author(s):  
Sameen Maruf ◽  
Fahimeh Saleh ◽  
Gholamreza Haffari

Machine translation (MT) is an important task in natural language processing (NLP), as it automates the translation process and reduces the reliance on human translators. With the resurgence of neural networks, the translation quality surpasses that of the translations obtained using statistical techniques for most language-pairs. Up until a few years ago, almost all of the neural translation models translated sentences independently , without incorporating the wider document-context and inter-dependencies among the sentences. The aim of this survey article is to highlight the major works that have been undertaken in the space of document-level machine translation after the neural revolution, so researchers can recognize the current state and future directions of this field. We provide an organization of the literature based on novelties in modelling and architectures as well as training and decoding strategies. In addition, we cover evaluation strategies that have been introduced to account for the improvements in document MT, including automatic metrics and discourse-targeted test sets. We conclude by presenting possible avenues for future exploration in this research field.


2021 ◽  
Vol 13 (16) ◽  
pp. 3065
Author(s):  
Libo Wang ◽  
Rui Li ◽  
Dongzhi Wang ◽  
Chenxi Duan ◽  
Teng Wang ◽  
...  

Semantic segmentation from very fine resolution (VFR) urban scene images plays a significant role in several application scenarios including autonomous driving, land cover classification, urban planning, etc. However, the tremendous details contained in the VFR image, especially the considerable variations in scale and appearance of objects, severely limit the potential of the existing deep learning approaches. Addressing such issues represents a promising research field in the remote sensing community, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose a Bilateral Awareness Network which contains a dependency path and a texture path to fully capture the long-range relationships and fine-grained details in VFR images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer backbone with memory-efficient multi-head self-attention, while the texture path is built on the stacked convolution operation. In addition, using the linear attention mechanism, a feature aggregation module is designed to effectively fuse the dependency features and texture features. Extensive experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3691
Author(s):  
Ciprian Orhei ◽  
Silviu Vert ◽  
Muguras Mocofan ◽  
Radu Vasiu

Computer Vision is a cross-research field with the main purpose of understanding the surrounding environment as closely as possible to human perception. The image processing systems is continuously growing and expanding into more complex systems, usually tailored to the certain needs or applications it may serve. To better serve this purpose, research on the architecture and design of such systems is also important. We present the End-to-End Computer Vision Framework, an open-source solution that aims to support researchers and teachers within the image processing vast field. The framework has incorporated Computer Vision features and Machine Learning models that researchers can use. In the continuous need to add new Computer Vision algorithms for a day-to-day research activity, our proposed framework has an advantage given by the configurable and scalar architecture. Even if the main focus of the framework is on the Computer Vision processing pipeline, the framework offers solutions to incorporate even more complex activities, such as training Machine Learning models. EECVF aims to become a useful tool for learning activities in the Computer Vision field, as it allows the learner and the teacher to handle only the topics at hand, and not the interconnection necessary for visual processing flow.


Sign in / Sign up

Export Citation Format

Share Document