scholarly journals TIDOT: A Teacher Imitation Learning Approach for Domain Adaptation with Optimal Transport

Author(s):  
Tuan Nguyen ◽  
Trung Le ◽  
Nhan Dam ◽  
Quan Hung Tran ◽  
Truyen Nguyen ◽  
...  

Using the principle of imitation learning and the theory of optimal transport we propose in this paper a novel model for unsupervised domain adaptation named Teacher Imitation Domain Adaptation with Optimal Transport (TIDOT). Our model includes two cooperative agents: a teacher and a student. The former agent is trained to be an expert on labeled data in the source domain, whilst the latter one aims to work with unlabeled data in the target domain. More specifically, optimal transport is applied to quantify the total of the distance between embedded distributions of the source and target data in the joint space, and the distance between predictive distributions of both agents, thus by minimizing this quantity TIDOT could mitigate not only the data shift but also the label shift. Comprehensive empirical studies show that TIDOT outperforms existing state-of-the-art performance on benchmark datasets.

Author(s):  
Zhen Qiu ◽  
Yifan Zhang ◽  
Hongbin Lin ◽  
Shuaicheng Niu ◽  
Yanxia Liu ◽  
...  

We study a practical domain adaptation task, called source-free unsupervised domain adaptation (UDA) problem, in which we cannot access source domain data due to data privacy issues but only a pre-trained source model and unlabeled target data are available. This task, however, is very difficult due to one key challenge: the lack of source data and target domain labels makes model adaptation very challenging. To address this, we propose to mine the hidden knowledge in the source model and exploit it to generate source avatar prototypes (i.e. representative features for each source class) as well as target pseudo labels for domain alignment. To this end, we propose a Contrastive Prototype Generation and Adaptation (CPGA) method. Specifically, CPGA consists of two stages: (1) prototype generation: by exploring the classification boundary information of the source model, we train a prototype generator to generate avatar prototypes via contrastive learning. (2) prototype adaptation: based on the generated source prototypes and target pseudo labels, we develop a new robust contrastive prototype adaptation strategy to align each pseudo-labeled target data to the corresponding source prototypes. Extensive experiments on three UDA benchmark datasets demonstrate the effectiveness and superiority of the proposed method.


Author(s):  
Jun Wen ◽  
Nenggan Zheng ◽  
Junsong Yuan ◽  
Zhefeng Gong ◽  
Changyou Chen

Domain adaptation is an important technique to alleviate performance degradation caused by domain shift, e.g., when training and test data come from different domains. Most existing deep adaptation methods focus on reducing domain shift by matching marginal feature distributions through deep transformations on the input features, due to the unavailability of target domain labels. We show that domain shift may still exist via label distribution shift at the classifier, thus deteriorating model performances. To alleviate this issue, we propose an approximate joint distribution matching scheme by exploiting prediction uncertainty. Specifically, we use a Bayesian neural network to quantify prediction uncertainty of a classifier. By imposing distribution matching on both features and labels (via uncertainty), label distribution mismatching in source and target data is effectively alleviated, encouraging the classifier to produce consistent predictions across domains. We also propose a few techniques to improve our method by adaptively reweighting domain adaptation loss to achieve nontrivial distribution matching and stable training. Comparisons with state of the art unsupervised domain adaptation methods on three popular benchmark datasets demonstrate the superiority of our approach, especially on the effectiveness of alleviating negative transfer.


Author(s):  
Kaizhong Jin ◽  
Xiang Cheng ◽  
Jiaxi Yang ◽  
Kaiyuan Shen

Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. As a simple and efficient method for domain adaptation, correlation alignment transforms the distribution of the source domain by utilizing the covariance matrix of the target domain, such that a model trained on the transformed source data can be applied to the target data. However, when source and target domains come from different institutes, exchanging information between the two domains might pose a potential privacy risk. In this paper, for the first time, we propose a differentially private correlation alignment approach for domain adaptation called PRIMA, which can provide privacy guarantees for both the source and target data. In PRIMA, to relieve the performance degradation caused by perturbing the covariance matrix in high dimensional setting, we present a random subspace ensemble based covariance estimation method which splits the feature spaces of source and target data into several low dimensional subspaces. Moreover, since perturbing the covariance matrix may destroy its positive semi-definiteness, we develop a shrinking based method for the recovery of positive semi-definiteness of the covariance matrix. Experimental results on standard benchmark datasets confirm the effectiveness of our approach.


Author(s):  
Haidi Hasan Badr ◽  
Nayer Mahmoud Wanas ◽  
Magda Fayek

Since labeled data availability differs greatly across domains, Domain Adaptation focuses on learning in new and unfamiliar domains by reducing distribution divergence. Recent research suggests that the adversarial learning approach could be a promising way to achieve the domain adaptation objective. Adversarial learning is a strategy for learning domain-transferable features in robust deep networks. This paper introduces the TSAL paradigm, a two-step adversarial learning framework. It addresses the real-world problem of text classification, where source domain(s) has labeled data but target domain (s) has only unlabeled data. TSAL utilizes joint adversarial learning with class information and domain alignment deep network architecture to learn both domain-invariant and domain-specific features extractors. It consists of two training steps that are similar to the paradigm, in which pre-trained model weights are used as initialization for training with new data. TSAL’s two training phases, however, are based on the same data, not different data, as is the case with fine-tuning. Furthermore, TSAL only uses the learned domain-invariant feature extractor from the first training as an initialization for its peer in subsequent training. By doubling the training, TSAL can emphasize the leverage of the small unlabeled target domain and learn effectively what to share between various domains. A detailed analysis of many benchmark datasets reveals that our model consistently outperforms the prior art across a wide range of dataset distributions.


Author(s):  
Renjun Xu ◽  
Pelen Liu ◽  
Yin Zhang ◽  
Fang Cai ◽  
Jindong Wang ◽  
...  

Domain adaptation (DA) has achieved a resounding success to learn a good classifier by leveraging labeled data from a source domain to adapt to an unlabeled target domain. However, in a general setting when the target domain contains classes that are never observed in the source domain, namely in Open Set Domain Adaptation (OSDA), existing DA methods failed to work because of the interference of the extra unknown classes. This is a much more challenging problem, since it can easily result in negative transfer due to the mismatch between the unknown and known classes. Existing researches are susceptible to misclassification when target domain unknown samples in the feature space distributed near the decision boundary learned from the labeled source domain. To overcome this, we propose Joint Partial Optimal Transport (JPOT), fully utilizing information of not only the labeled source domain but also the discriminative representation of unknown class in the target domain. The proposed joint discriminative prototypical compactness loss can not only achieve intra-class compactness and inter-class separability, but also estimate the mean and variance of the unknown class through backpropagation, which remains intractable for previous methods due to the blindness about the structure of the unknown classes. To our best knowledge, this is the first optimal transport model for OSDA. Extensive experiments demonstrate that our proposed model can significantly boost the performance of open set domain adaptation on standard DA datasets.


Author(s):  
Yuguang Yan ◽  
Wen Li ◽  
Michael Ng ◽  
Mingkui Tan ◽  
Hanrui Wu ◽  
...  

Domain adaptation aims to reduce the effort on collecting and annotating target data by leveraging knowledge from a different source domain. The domain adaptation problem will become extremely challenging when the feature spaces of the source and target domains are different, which is also known as the heterogeneous domain adaptation (HDA) problem. In this paper, we propose a novel HDA method to find the optimal discriminative correlation subspace for the source and target data. The discriminative correlation subspace is inherited from the canonical correlation subspace between the source and target data, and is further optimized to maximize the discriminative ability for the target domain classifier. We formulate a joint objective in order to simultaneously learn the discriminative correlation subspace and the target domain classifier. We then apply an alternating direction method of multiplier (ADMM) algorithm to address the resulting non-convex optimization problem. Comprehensive experiments on two real-world data sets demonstrate the effectiveness of the proposed method compared to the state-of-the-art methods.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1994
Author(s):  
Ping Li ◽  
Zhiwei Ni ◽  
Xuhui Zhu ◽  
Juan Song ◽  
Wenying Wu

Domain adaptation manages to learn a robust classifier for target domain, using the source domain, but they often follow different distributions. To bridge distribution shift between the two domains, most of previous works aim to align their feature distributions through feature transformation, of which optimal transport for domain adaptation has attract researchers’ interest, as it can exploit the local information of the two domains in the process of mapping the source instances to the target ones by minimizing Wasserstein distance between their feature distributions. However, it may weaken the feature discriminability of source domain, thus degrade domain adaptation performance. To address this problem, this paper proposes a two-stage feature-based adaptation approach, referred to as optimal transport with dimensionality reduction (OTDR). In the first stage, we apply the dimensionality reduction with intradomain variant maximization but source intraclass compactness minimization, to separate data samples as much as possible and enhance the feature discriminability of the source domain. In the second stage, we leverage optimal transport-based technique to preserve the local information of the two domains. Notably, the desirable properties in the first stage can mitigate the degradation of feature discriminability of the source domain in the second stage. Extensive experiments on several cross-domain image datasets validate that OTDR is superior to its competitors in classification accuracy.


2013 ◽  
Vol 22 (05) ◽  
pp. 1360005 ◽  
Author(s):  
AMAURY HABRARD ◽  
JEAN-PHILIPPE PEYRACHE ◽  
MARC SEBBAN

A strong assumption to derive generalization guarantees in the standard PAC framework is that training (or source) data and test (or target) data are drawn according to the same distribution. Because of the presence of possibly outdated data in the training set, or the use of biased collections, this assumption is often violated in real-world applications leading to different source and target distributions. To go around this problem, a new research area known as Domain Adaptation (DA) has recently been introduced giving rise to many adaptation algorithms and theoretical results in the form of generalization bounds. This paper deals with self-labeling DA whose goal is to iteratively incorporate semi-labeled target data in the learning set to progressively adapt the classifier from the source to the target domain. The contribution of this work is three-fold: First, we provide the minimum and necessary theoretical conditions for a self-labeling DA algorithm to perform an actual domain adaptation. Second, following these theoretical recommendations, we design a new iterative DA algorithm, called GESIDA, able to deal with structured data. This algorithm makes use of the new theory of learning with (ε,γ,τ)-good similarity functions introduced by Balcan et al., which does not require the use of a valid kernel to learn well and allows us to induce sparse models. Finally, we apply our algorithm on a structured image classification task and show that self-labeling domain adaptation is a new original way to deal with scaling and rotation problems.


Author(s):  
Yonghao Xu ◽  
Bo Du ◽  
Lefei Zhang ◽  
Qian Zhang ◽  
Guoli Wang ◽  
...  

Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.


2020 ◽  
Vol 34 (03) ◽  
pp. 2661-2668
Author(s):  
Chuang Lin ◽  
Sicheng Zhao ◽  
Lei Meng ◽  
Tat-Seng Chua

Existing domain adaptation methods on visual sentiment classification typically are investigated under the single-source scenario, where the knowledge learned from a source domain of sufficient labeled data is transferred to the target domain of loosely labeled or unlabeled data. However, in practice, data from a single source domain usually have a limited volume and can hardly cover the characteristics of the target domain. In this paper, we propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN), for visual sentiment classification. To handle data from multiple source domains, it learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution. This is achieved via cycle consistent adversarial learning in an end-to-end manner. Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.


Sign in / Sign up

Export Citation Format

Share Document