scholarly journals Microstructure and Magnetic Properties of Grain Size Controlled Ba Ferrite Using Hot Isostatic Pressing

2014 ◽  
Vol 61 (S1) ◽  
pp. S255-S257
Author(s):  
S. Ito ◽  
T. Nagatake ◽  
Y. Yamaguchi ◽  
K. Fujimoto
2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


2019 ◽  
Vol 3 (2) ◽  

IR Transparent ZnS ceramics processed through chemical vapour deposition were subjected to Hot Isostatic pressing and the samples in both the conditions were characterized by XRD, microstructure and high temperature impedance spectroscopic studies for the dielectric and electrical properties. Both the samples have shown cubic sphalerite phase with enhanced orientation along (111) plane as a result of hot isostatic pressing as revealed by XRD.HIP treatment to ZnS facilitated the enhancement of the homogeneity of microstructure and enhancement in the grain size from 10μm to 50μm. The electrical behavior of both the samples was investigated by AC impedance spectroscopy in the frequency range 1Hz to 1MHz from RT to 500°C in dry air. HIP has resulted in a significant increase in the dielectric constant, which can be attributed to the increase in homogeneity and the grain size. Further, the complex impedance plots exhibited two impedance semicircles identified in the frequency range is explained by the grain and grain boundary effects. An equivalent-circuit analysis of AC impedance spectra based on the brick-layer model was performed. Activation energies obtained from the conductivity plots indicates an Arrhenius type thermally activated process.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1383-1388 ◽  
Author(s):  
MASLEEYATI YUSOP ◽  
DELIANG ZHANG ◽  
MARCUS WILSON ◽  
NICK STRICKLAND

Al 2 O 3-20 vol % Fe 70 Co 30 composite powders have been prepared by high energy ball milling a mixture of Al 2 O 3 powder and Fe 70 Co 30 alloy powder. The Fe 70 Co 30 alloy powder was also prepared by mechanical alloying of Fe and Co powders using the same process. The effects of milling duration from 8 to 48 hours on microstructure and magnetic properties of the nanostructured composite powders have been studied by means of X-ray Diffractometry (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). It was found that the nanostructured composite powder particles with irregular shapes and Fe 70 Co 30 alloy particles being embedded in them formed after 8 hours of milling. The average grain size of the Al 2 O 3 matrix reduced drastically to less than 18nm after 16 hours of milling. On the other hand, the embedded alloy particles demonstrated almost unchanged average grain size in the range of 14-15nm. Magnetic properties of the powder compacts at room temperature were measured from hysteresis curves, and show strong dependence of the milling time, with the coercivity increasing from 67.1 up to 127.9kOe with increasing the milling time from 8 to 48 hours. The possible microstructural reasons for this dependence are discussed.


2017 ◽  
Vol 888 ◽  
pp. 42-46 ◽  
Author(s):  
Fatin Khairah Bahanurdin ◽  
Julie Juliewatty Mohamed ◽  
Zainal Arifin Ahmad

In this research, alkaline niobate known as K0.5Na0.5NbO3 (KNN) lead-free piezoelectric ceramic was synthesis by solid state reaction method which pressing at different sintering temperatures (1000 °C and 1080 °C) prepared via hot isostatic pressing (HIP)). The effect of sintering temperature on structure and dielectric properties was studied. The optimum sintering temperature (at 1080 °C for 30 minutes) using hot isostatic pressing (HIP) was successfully increase the density, enlarge the particle grain size in the range of 0.3 µm – 2.5 µm and improves the dielectric properties of K0.5Na0.5NbO3 ceramics. The larger grain size and higher density ceramics body will contribute the good dielectric properties. At room temperature, the excellent relative permittivity and tangent loss recorded at 1 MHz (ɛr = 5517.35 and tan δ = 0.954), respectively for KNN1080HIP sample. The KNN1080HIP sample is also exhibits highest relative density which is 4.485 g/cm3. The ɛr depends upon density and in this work, the density increase as the sintering temperature increase, which resulting the corresponding ɛr value also increases.


2010 ◽  
Vol 24 (02) ◽  
pp. 169-182
Author(s):  
M. MANJURUL HAQUE ◽  
M. HUQ ◽  
SYED FARID UDDIN FARHAD ◽  
JASIM UDDIN KHAN ◽  
M. A. HAKIM

The microstructure and magnetic properties of Mg – Cu – Zn ferrites prepared by using solid-state reaction method have been investigated. X-ray diffraction (XRD), a scanning electron microscope (SEM), impedance analyzer and a vibrating sample magnetometer (VSM) were utilized in order to study the effect of copper substitution and its impact on the crystal structure, grain size, microstructure and magnetic properties of the Mg – Cu – Zn ferrite. The formation of cubic spinel phase was identified using XRD technique. The microstructures of the samples show that the grain growth is greatly enhanced by the addition of CuO which is attributed to the liquid phase during sintering. The average grain size (Dm) increases significantly with increasing Cu content. The initial permeability (μ') of the samples increases appreciably with increasing Cu content which is attributed to the increase of grain size and density of the samples. The resonance frequency (fr) of the samples shifts toward the lower frequency as the Cu content increases. The sharp fall of μ' in μ'-T curves is observed for all the samples which indicate the homogeneity of the samples. The saturation magnetization (Ms) of the Mg – Cu – Zn ferrites increases slightly with increasing Cu concentration.


2003 ◽  
Vol 18 (10) ◽  
pp. 2415-2426 ◽  
Author(s):  
J. Muñoz-Saldaña ◽  
H. Balmori-Ramírez ◽  
D. Jaramillo-Vigueras ◽  
T. Iga ◽  
G. A. Schneider

The influence of grain size and density of yttria-tetragonal zirconia polycrystals (Y-TZPs) ceramics on mechanical properties and on low-temperature aging degradation (LTD) in air and in hot water was investigated. A TZP powder containing 3 mol% Y2O3 was consolidated by slip casting and densified by the sintering/hot isostatic pressing (HIP) method. Only the presintered samples that contained less than 0.15% open porosity reached near full density after HIP. The best conditions to reach full density were found to be attained by presintering and HIP both at 1400 °C. At these conditions, some of the best mechanical properties such as modulus of rupture and Weibull modulus reached 1397 ± 153 MPa and, 10.6, respectively. These values were clearly higher than those obtained from sintered bodies and samples hot isostatically pressed at 1600 °C. Aging degradation of 3Y-TZP materials can be avoided through microstructural design. Fully dense materials with a critical grain size <0.36 μm did not show any evidence of degradation after extreme aging conditions at pressurized autoclaving in hot water at 100, 200, and 260 °C for 8 h. We propose a criterion to predict degradation in air as well as in hot water for the characterized materials based on the microstructure and density control of the samples.


2010 ◽  
Vol 62 ◽  
pp. 197-202
Author(s):  
Hirota Ken ◽  
Takaoka Katsuya ◽  
Murase Yasushi ◽  
Kato Masaki

Synthesis of dense materials with the compositions of Al2O3/Mo2N=100/0 ~ 40/60 vol% has been attempted directly from Al2O3/Mo mixed raw powder compacts using capsule-free N2 hot isostatic pressing (HIP). During HIPing [1500°C/(16~20)MPa]/1h], solid/gas reaction between Mo and N2 was introduced to form Mo2N. Most sintered composites consisting of only Al2O3 and Mo2N phases reached a higher relative density than 98.0% with closed pores nevertheless capsule-free HIPing. Distribution of Mo2N particles just formed suppressed the grain growth of Al2O3 during sintering. Mechanical properties, such as bending strength (Σb), Vickers hardness (HV), fracture toughness (K1C), and other properties have been evaluated as a function of their compositions. The best mechanical values of Σb (c.a. 573 MPa), HV (c.a. 20.3 GPa) and K1C (c.a. 5.00 MPa・m1/2) were attained at the composition of Al2O3/Mo2N=90/10 vol%, due to a high density (98.6%) and small grain size of Al2O3 matrix (Gs c.a. 4.70 μm). Further addition of Mo2N reduced the sinterability of matrix grains, resulting in low densities of around 90% at the 40/60 vol% composition.


1998 ◽  
Vol 517 ◽  
Author(s):  
Y.-N. Hsu ◽  
D. E. Laughlin ◽  
D. N. Lambeth

AbstractThe effects of sputtering argon pressures and sputtering power on the microstructure, texture and magnetic properties of NiAI underlayers on CoCrPt films were investigated. In this paper, the relationship between the sputtering conditions, microstructure, crystallographic texture and magnetic properties of these thin films will be discussed. By controlling the sputtering pressure and sputtering power, the texture and microstructure of NiAI underlayers were found to vary. This in turn was found to influence the magnetic properties of CoCrPt thin films. It was found that 10 mtorr is the optimum pressure to deposit the NiAl thin films to obtain the best magnetic properties for our system. At this argon pressure, the coercivity reached a maximum value because of the strongest CoCrPt (1010) texture and smallest grain size. At lower argon pressures (< 10 mtorr), NiAI tended to have a (110) texture reducing the CoCrPt (1010) texture, which in turn reduced the CoCrPt coercivity and S*. Also, high NiAl deposition pressures (>30 mtorr) yielded larger grains and a weaker CoCrPt (1010) texture, thereby decreasing the coercivity of the CoCrPt films. Increasing the sputtering power has been found to increase the CoCrPt coercivity and S* value. However, the grain sizes of the CoCrPt/NiAl thin films deposited at higher sputtering power were larger than those obtained at lower sputtering power.


Sign in / Sign up

Export Citation Format

Share Document