The Effect of Closed Septorhinoplasty on Nasal Functions and on External and Internal Nasal Valves: A Prospective Study

2017 ◽  
Vol 31 (5) ◽  
pp. 323-327 ◽  
Author(s):  
Giancarlo Pecorari ◽  
Giuseppe Riva ◽  
Francesca Antonella Bianchi ◽  
Giovanni Cavallo ◽  
Francesca Revello ◽  
...  

Background Because nasal function and shape are so closely intertwined, quantitative assessments can better define their relationship and how they are affected by septorhinoplasty. Objective The aim of this prospective study was to perform an analysis of the nasal airflow resistances and a three-dimensional (3D) evaluation of the soft-tissue changes after closed septorhinoplasty. Methods Before surgery (TO) and 6 months after closed septorhinoplasty (Tl), 30 patients underwent symptoms evaluation by means of the Italian version of the Nasal Obstruction Symptom Evaluation scale, endoscopic fiberoptic nasal examination, and visual analog scale for subjective assessment of nasal obstruction. Nasal airflow resistances were investigated with active anterior active rhinomanometry. A 3D laser scanner was used to evaluate facial soft-tissues, with specific nasal points and angles. Results Subjective nasal obstruction decreased. Anterior active rhinomanometry demonstrated a reduction in total inspiratory and expiratory resistances between T0 and T1 but without statistical significance. The significance was still absent after decongestion, excluding turbinate hypertrophy as a cause of failed objective amelioration of nasal resistance. Facial laser scanning showed statistically significant reduction of the superior nasal width and superior alar angle, and a weak negative correlation between the superior alar angle and nasal resistances. Conclusion The absence of objective reduction of nasal airflow resistances could be the result of concurrent surgery on nasal septum and nasal valve. In particular, the ameliorating effect on nasal airflow resistances is counterbalanced by the worsening effect of the narrowing of nasal valve.

2019 ◽  
Vol 36 (9) ◽  
pp. 3164-3179
Author(s):  
Punjan Dohare ◽  
Amol P. Bhondekar ◽  
Anupma Sharma ◽  
C. Ghanshyam

Purpose The purpose of this paper is to understand the effect of airflow dynamics on vortices for different flow rates using the human nose three-dimensional model. Design/methodology/approach Olfaction originates with air particles travelling from an external environment to the upper segment of the human nose. This phenomenon is generally understood by using the nasal airflow dynamics, which enhances the olfaction by creating the vortices in the human nose. An anatomical three-dimensional model of the human nasal cavity from computed tomography (CT) scan images using the MIMICS software (Materialise, USA) was developed in this study. Grid independence test was performed through volume flow rate, pressure drop from nostrils and septum and average velocity near the nasal valve region using a four computational mesh model. Computational fluid dynamics (CFD) was used to examine the flow pattern and influence of airflow dynamics on vortices in the nasal cavity. Numerical simulations were conducted for the flow rates of 7.5, 10, 15 and 20 L/min using numerical finite volume methods. Findings At coronal cross-sections, dissimilar nasal airflow patterns were observed for 7.5, 10, 15 and 20 L/min rate of fluid flow in the human nasal cavity. Vortices that are found at the boundaries with minimum velocity creates deceleration zone in the nose vestibule region, which is accompanied by flow segregation. Maximum vortices were observed in the nasal valve region and the posterior end of the turbinate region, which involves mixing and recirculation and is responsible for enhancing the smelling process. Practical implications The proposed analysis is applicable to design the sensor chamber for electronic noses. Originality/value In this paper, the influence of airflow dynamics on vortices in the human nasal cavity is discussed through numerical simulations.


Author(s):  
Zi Fen Lim ◽  
Parvathy Rajendran ◽  
Muhamad Yusri Musa ◽  
Chih Fang Lee

AbstractA numerical simulation of a patient’s nasal airflow was developed via computational fluid dynamics. Accordingly, computerized tomography scans of a patient with septal deviation and allergic rhinitis were obtained. The three-dimensional (3D) nasal model was designed using InVesalius 3.0, which was then imported to (computer aided 3D interactive application) CATIA V5 for modification, and finally to analysis system (ANSYS) flow oriented logistics upgrade for enterprise networks (FLUENT) to obtain the numerical solution. The velocity contours of the cross-sectional area were analyzed on four main surfaces: the vestibule, nasal valve, middle turbinate, and nasopharynx. The pressure and velocity characteristics were assessed at both laminar and turbulent mass flow rates for both the standardized and the patient’s model nasal cavity. The developed model of the patient is approximately half the size of the standardized model; hence, its velocity was approximately two times more than that of the standardized model.


2018 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Rowland Agbara ◽  
Ambrose Emeka Obiechina ◽  
Sunday Olusegun Ajike ◽  
Davis Sunday Adeola

Introduction: This prospective study highlights the pattern of oral and maxillofacial injuries in patients with associated craniocerebral injuries. Material and Methods: This was a prospective descriptive study conducted over a 22-month period. Information was collected using a structured questionnaire and analyzed using Statistical Package for Social Sciences (SPSS) Version 13 (SPSS Inc., Chicago, IL, USA) and Microsoft Office Excel 2007 (Microsoft, Redmond, WA, USA). Test of statistical significance was set at 0.05. Results: Three hundred and three consecutive patients were studied and this consisted of 254 males and 49 females. The difference in the gender distribution was statistically significant (p = 0.008). Road traffic crashes (n = 262; 86.5%) was the most common cause of injury and soft tissues orofacial injuries accounted for 61.7% of injuries. Le Fort II fractures were the major skeletal injuries. Glasgow Coma Score (GCS) of 13–15 had the highest frequency (n = 157; 53.4%). Intracerebral haemorrhage was the most common cerebral injury recorded and the commonest complication noted was dysocclusion. Discussion: Although middle third facial fractures were the most common skeletal injury, fractures of the upper third facial skeleton appear to be associated with lower GCS. Conclusion: Fractures of the facial skeleton are fairly common in craniocerebral injuries.


Author(s):  
Xin-Yu Li ◽  
Thomas Pape ◽  
Doug Colwell ◽  
Charles Dewhurst ◽  
Dong Zhang

Abstract Larval characters are of importance in systematic and evolutionary studies of Diptera but lag behind characters of adults due to difficulties in obtaining relevant information. Larvae of stomach bot flies are obligate parasites completing development exclusively in the alimentary tract of equids and rhinoceroses. They possess diversified morphological adaptations, providing remarkable examples to further our understanding of larval evolution. Herein, three-dimensional structures of first instar Gasterophilus pecorum and Gyrostigma rhinocerontis are compared using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We suggest CLSM has a large potential for exploiting cryptic character systems of micro fly larvae, as spectral range and intensity of autofluorescence emitted by sclerotized structures and soft tissues are distinct, presenting a high-contrast mechanism for multistructural visualization with non-destructive sample preparation. Five new potential synapomorphies are proposed to corroborate the sister-group Gasterophilus and Gyrostigma. The upward curving mouth-hooks of first instar Gasterophilus and Gyrostigma are distinctive in Cyclorrhapha and possibly serve to facilitate the larval subcutaneous migration within the host. Three types of mouthhooks are recognized in first instar Oestridae, with the gently curved and gradually tapered type optimized as the ancestral state, from which the gasterophiline and hypodermatine types evolved independently.


1996 ◽  
Vol 33 (3) ◽  
pp. 190-197 ◽  
Author(s):  
Lun-Jou Lo ◽  
Jeffrey L. Marsh ◽  
Alex A. Kane ◽  
Michael W. Vannier

Unilateral coronal synostosis (UCS) produces overt craniofacial dysmorphology. UCS surgery in infancy aims to release the osseous restriction and normalize the fronto-orbital deformity. The quantitative effect of this surgery on the orbit and its contents is unknown. This study was conducted to quantify the preoperative orbital dysmorphology and its surgical outcome in patients with unilateral coronal synostosis. Twenty-eight UCS patients had preoperative three-dimensional computerized tomographic (CT) scans (at mean age 4.0 months), cranio-orbital reconstructive surgery (at 4.7 months), and postoperative scans (at 18.1 months). The CT data were analyzed using a computer workstation and AnalyzeTM biomedical imaging software. Four measurements were performed on both ipsilateral (same side as synostosis) and contralateral (opposite to synostosis) orbits of each scan: orbital index (OI, 100 × height/width of orbit), orbital cavity volume (OV), ocular globe volume (GV), and ventral globe index (VGI, 100 × globe volume ventral to the anterior surface of orbital cavity/GV). The data were analyzed for statistical significance using Student's t test. Preoperatively, the OI was significantly greater on the ipsilateral than on the contralateral side (113.7 vs. 87.3). There was a significant improvement on both sides of the orbit postoperatively, with ipsilateral 99.1 and contralateral 92.1. However, the difference between both sides remained significant. The OV was smaller in the ipsilateral orbits both pre- and postoperatively, with ipse/contralateral ratios of 95.8 and 95.2, respectively. Importantly, the GV was consistently smaller in the ipsilateral orbits preoperatively, with an ipse/contralateral ratio of 93.3. The ratio increased to 97.1 postoperatively, a statistically significant change. In the ipsilateral orbits, the preoperative VGI was significantly greater. The VGI improved postoperatively. These data indicate that UCS affects the development of the osseous orbit as well as its soft-tissue contents. After cranio-orbital surgery, there is diminution of asymmetry of both the bony orbit and its soft-tissue contents. Partial normalization of orbital dysmorphology occurred during the first postoperative year. UCS surgery in infancy does not prevent growth of orbital hard or soft tissues, and it seems to permit normalization of previously impaired growth.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


2020 ◽  
Vol 118 (1) ◽  
pp. 106
Author(s):  
Lei Zhang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Guoli Jia ◽  
Jian Gong ◽  
...  

The three-dimensional (3D) model of erosion state of blast furnace (BF) hearth was obtained by using 3D laser scanning method. The thickness of refractory lining can be measured anywhere and the erosion curves were extracted both in the circumferential and height directions to analyze the erosion characteristics. The results show that the most eroded positions located below 20# tuyere with an elevation of 7700 mm and below 24#–25# tuyere with an elevation of 8100 mm, the residual thickness here is only 295 mm. In the circumferential directions, the serious eroded areas located between every two tapholes while the taphole areas were protected well by the bonding material. In the height directions, the severe erosion areas located between the elevation of 7600 mm to 8200 mm. According to the calculation, the minimum depth to ensure the deadman floats in the hearth is 2581 mm, corresponding to the elevation of 7619 mm. It can be considered that during the blast furnace production process, the deadman has been sinking to the bottom of BF hearth and the erosion areas gradually formed at the root of deadman.


Author(s):  
E. M. Timanin ◽  
N. S. Sydneva ◽  
A. A. Zakharova

Introduction. To date there is a lack of studies dedicated to the objectification of the palpation data obtained by a specialist during the osteopathic examination. The issue of the evidence of the results of osteopathic correction still remains important. Search for instrumental methods allowing to register and to measure various palpation phenomena and manifestations of somatic dysfunctions is very relevant for the development of osteopathy as a science. It is also very important to find objective characteristics of these methods.Goal of research — to study viscoelastic characteristics of the soft tissues of the lower legs by palpation and instrumental methods before and after osteopathic correction.Materials and methods. 22 volunteers (12 women and 10 men) aged 18–23 years without complaints of the musculoskeletal system were examined. Osteopathic diagnostics and measurement of the viscoelastic properties of muscles were carried out by the method of vibration viscoelastometry before and after osteopathic correction.Results. Correlation analysis by Spearman showed that the subjective assessment of an osteopath positively correlated with both elasticity (r=0,43, p<0,05) and viscosity of soft issues (r=0,29, p<0,05). For the gastrocnemius muscle, this pattern was even more pronounced — for elasticity r=0,51, p<0,05, for viscosity =0,34, p<0,05. After osteopathic correction no changes in the elasticity of the soft tissues were observed. The viscosity of the tissues reduced, but in the projection of the gastrocnemius muscle, these changes were not statistically significant (p=0,12), whereas in the projection of the soleus muscle statistically significant changes (p=0,034) were observed.Conclusion. Changes in the viscoelastic properties of tissues demonstrated that the effects of osteopathic correction with the use of myofascial mobilization techniques, articulation mobilization techniques, and lymphatic drainage techniques were not obvious. The elasticity of soft tissues of the lower legs did not change, while the viscosity decreased, especially in the projection of the soleus muscles. This effect of the osteopathic correction can be associated with the effect of thixotropy — the transformation of gel-like intercellular substance into sol. Thus, the research showed that vibration viscoelastometry can be used for the objectifi cation of the condition of soft tissues and of the effects of osteopathic correction.


2015 ◽  
Vol 6 (1) ◽  
pp. 19-29 ◽  
Author(s):  
G. Bitelli ◽  
P. Conte ◽  
T. Csoknyai ◽  
E. Mandanici

The management of an urban context in a Smart City perspective requires the development of innovative projects, with new applications in multidisciplinary research areas. They can be related to many aspects of city life and urban management: fuel consumption monitoring, energy efficiency issues, environment, social organization, traffic, urban transformations, etc. Geomatics, the modern discipline of gathering, storing, processing, and delivering digital spatially referenced information, can play a fundamental role in many of these areas, providing new efficient and productive methods for a precise mapping of different phenomena by traditional cartographic representation or by new methods of data visualization and manipulation (e.g. three-dimensional modelling, data fusion, etc.). The technologies involved are based on airborne or satellite remote sensing (in visible, near infrared, thermal bands), laser scanning, digital photogrammetry, satellite positioning and, first of all, appropriate sensor integration (online or offline). The aim of this work is to present and analyse some new opportunities offered by Geomatics technologies for a Smart City management, with a specific interest towards the energy sector related to buildings. Reducing consumption and CO2 emissions is a primary objective to be pursued for a sustainable development and, in this direction, an accurate knowledge of energy consumptions and waste for heating of single houses, blocks or districts is needed. A synoptic information regarding a city or a portion of a city can be acquired through sensors on board of airplanes or satellite platforms, operating in the thermal band. A problem to be investigated at the scale A problem to be investigated at the scale of the whole urban context is the Urban Heat Island (UHI), a phenomenon known and studied in the last decades. UHI is related not only to sensible heat released by anthropic activities, but also to land use variations and evapotranspiration reduction. The availability of thermal satellite sensors is fundamental to carry out multi-temporal studies in order to evaluate the dynamic behaviour of the UHI for a city. Working with a greater detail, districts or single buildings can be analysed by specifically designed airborne surveys. The activity has been recently carried out in the EnergyCity project, developed in the framework of the Central Europe programme established by UE. As demonstrated by the project, such data can be successfully integrated in a GIS storing all relevant data about buildings and energy supply, in order to create a powerful geospatial database for a Decision Support System assisting to reduce energy losses and CO2 emissions. Today, aerial thermal mapping could be furthermore integrated by terrestrial 3D surveys realized with Mobile Mapping Systems through multisensor platforms comprising thermal camera/s, laser scanning, GPS, inertial systems, etc. In this way the product can be a true 3D thermal model with good geometric properties, enlarging the possibilities in respect to conventional qualitative 2D images with simple colour palettes. Finally, some applications in the energy sector could benefit from the availability of a true 3D City Model, where the buildings are carefully described through three-dimensional elements. The processing of airborne LiDAR datasets for automated and semi-automated extraction of 3D buildings can provide such new generation of 3D city models.


Sign in / Sign up

Export Citation Format

Share Document