Parkin knockout rats develop Parkinsonian-like motor impairments upon exposure to psychostimulant methamphetamine

2016 ◽  
Vol 4 (Suppl. 2) ◽  
pp. A18.32
Author(s):  
Anna Moszczynska
Keyword(s):  
Author(s):  
Mieczyslaw Pokorski

This study addresses respiratory and motor impairments in an experimental reserpine-induced model of parkinsonism in rats. The role of chronic hypoxia due to diminished ventilation in the development and course of neurodegeneration is addressed. An attempt was made to distinguish between central and peripheral dopamine pathways in the mechanisms of neurodegeneration. A dissociation of putative mechanisms of respiratory and motor impairments is tackled as well. Although this purely experimental study cannot be directly extrapolated to human pathophysiology, the corollaries have been drawn concerning the potential repercussions of the respiratory and motor impairments for the physiotherapeutic procedures in the management of chronic neurodegeneration.


2020 ◽  
Vol 5 (1) ◽  
pp. 58-64
Author(s):  
Giuseppe Toro ◽  
Antimo Moretti ◽  
Marco Paoletta ◽  
Annalisa De Cicco ◽  
Adriano Braile ◽  
...  

Hip fractures are severe conditions with a high morbidity and mortality, especially when the diagnosis is delayed, and if formulated over 30 days after the injury, is termed a ‘neglected femoral neck fracture’ (NFNF). Cerebral palsy (CP) is probably one of the major risk factors for NFNF in Western countries, mainly because of both cognitive and motor impairments. However, considering the high prevalence of fractures in these patients, the incidence of NFNF in this population is probably underestimated, and this condition might result in persistent hip or abdominal pain. Several techniques are available for the treatment of NFNF (i.e. muscle pedicle bone graft, fixation with fibular graft, valgisation osteotomy), but most of them could affect motor function. Motor function must be preserved for as long as possible, in order to enhance the quality of life of CP patients. After discussing published NFNF cases in CP patients and available treatment options, a practical approach is proposed to facilitate the orthopaedic surgeon to both early identify and appropriately manage these challenging fractures. Cite this article: EFORT Open Rev 2020;5:58-64. DOI: 10.1302/2058-5241.5.190019


Author(s):  
Dina Salama Abd Elmagid ◽  
Hend Magdy

Abstract Background Cerebral palsy (CP) has been identified as one of the most important and common causes of childhood disabilities worldwide and is often accompanied by multiple comorbidities. CP is defined as a group of disorders of the development of movement and posture, causing activity limitation that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain. The objective of our study was to describe main clinical pattern and motor impairments of our patients, and to evaluate the presence of risk factors and if there is a relation to the type of cerebral palsy. Methods Children with cerebral palsy were retrospectively enrolled over 2 years from the neurology outpatient clinics. Cerebral palsy risk factors and motor impairments were determined through caregiver interviews, review of medical records, and direct physical examination. Results One thousand children with cerebral palsy were enrolled. Subjects were 64.4% male, with a median age of 2.5 years. The risk factors for cerebral palsy in our study were antenatal (21%), natal and post-natal (30.5%), post-neonatal (17.1%), and unidentified (31.4%). Antenatal as CNS malformation (26.6%), maternal DM (17.6%), prolonged rupture of membrane (11.9%), maternal hemorrhage (10.4%), and pre-eclampsia (4.7%). Natal and post-natal as hypoxic ischemic encephalopathy (28.5%), infection (16.3%), hyperbilirubinemia (12.7%), cerebrovascular accidents (8.8%), meconium aspiration (6.2%), and intracranial hemorrhage. Post-neonatal as CNS infection (34.5%), cerebrovascular accidents (28.6%), sepsis (23.9%), and intracranial hemorrhage (8.7%). Conclusions Cerebral palsy has different etiologies and risk factors. Further studies are necessary to determine optimal preventative strategies in these patients.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Nunzio Vicario ◽  
Federica M. Spitale ◽  
Daniele Tibullo ◽  
Cesarina Giallongo ◽  
Angela M. Amorini ◽  
...  

AbstractMotoneuronal loss is the main feature of amyotrophic lateral sclerosis, although pathogenesis is extremely complex involving both neural and muscle cells. In order to translationally engage the sonic hedgehog pathway, which is a promising target for neural regeneration, recent studies have reported on the neuroprotective effects of clobetasol, an FDA-approved glucocorticoid, able to activate this pathway via smoothened. Herein we sought to examine functional, cellular, and metabolic effects of clobetasol in a neurotoxic mouse model of spinal motoneuronal loss. We found that clobetasol reduces muscle denervation and motor impairments in part by restoring sonic hedgehog signaling and supporting spinal plasticity. These effects were coupled with reduced pro-inflammatory microglia and reactive astrogliosis, reduced muscle atrophy, and support of mitochondrial integrity and metabolism. Our results suggest that clobetasol stimulates a series of compensatory processes and therefore represents a translational approach for intractable denervating and neurodegenerative disorders.


1989 ◽  
Vol 1 (3) ◽  
pp. 63-70 ◽  
Author(s):  
Heidi M. Horstmann ◽  
Simon P. Levine ◽  
Lincoln A. Jaros
Keyword(s):  

2016 ◽  
Vol 96 (11) ◽  
pp. 1773-1781
Author(s):  
Bethany J. Wilcox ◽  
Megan M. Wilkins ◽  
Benjamin Basseches ◽  
Joel B. Schwartz ◽  
Karen Kerman ◽  
...  

Abstract Background Challenges with any therapeutic program for children include the level of the child's engagement or adherence. Capitalizing on one of the primary learning avenues of children, play, the approach described in this article is to develop therapeutic toy and game controllers that require specific and repetitive joint movements to trigger toy/game activation. Objective The goal of this study was to evaluate a specially designed wrist flexion and extension play controller in a cohort of children with upper extremity motor impairments (UEMIs). The aim was to understand the relationship among controller play activity, measures of wrist and forearm range of motion (ROM) and spasticity, and ratings of fun and difficulty. Design This was a cross-sectional study of 21 children (12 male, 9 female; 4–12 years of age) with UEMIs. Methods All children participated in a structured in-clinic play session during which measurements of spasticity and ROM were collected. The children were fitted with the controller and played with 2 toys and 2 computer games for 5 minutes each. Wrist flexion and extension motion during play was recorded and analyzed. In addition, children rated the fun and difficulty of play. Results Flexion and extension goal movements were repeatedly achieved by children during the play session at an average frequency of 0.27 Hz. At this frequency, 15 minutes of play per day would result in approximately 1,700 targeted joint motions per week. Play activity was associated with ROM measures, specifically supination, but toy perception ratings of enjoyment and difficulty were not correlated with clinical measures. Limitations The reported results may not be representative of children with more severe UEMIs. Conclusions These outcomes indicate that the therapeutic controllers elicited repetitive goal movements and were adaptable, enjoyable, and challenging for children of varying ages and UEMIs.


2000 ◽  
Vol 83 (5) ◽  
pp. 3147-3153 ◽  
Author(s):  
Abderraouf Belhaj-Saïf ◽  
Paul D. Cheney

It has been hypothesized that the magnocellular red nucleus (RNm) contributes to compensation for motor impairments associated with lesions of the pyramidal tract. To test this hypothesis, we used stimulus triggered averaging (StTA) of electromyographic (EMG) activity to characterize changes in motor output from the red nucleus after lesions of the pyramidal tract. Three monkeys were trained to perform a reach and prehension task. EMG activity was recorded from 11 forearm muscles including one elbow, five wrist, and five digit muscles. Microstimulation (20 μA at 20 Hz) was delivered throughout the movement task to compute StTAs. Two monkeys served as controls. In a third monkey, 65% of the left pyramidal tract had been destroyed by an electrolytic lesion method five years before recording. The results demonstrate a clear pattern of postlesion reorganization in red nucleus–mediated output effects on forearm muscles. The normally prominent extensor preference in excitatory output from the RNm (92% in extensors) was greatly diminished in the lesioned monkey (59%). Similarly, suppression effects, which are normally much more prominent in flexor than in extensor muscles (90% in flexors), were also more evenly distributed after recovery from pyramidal tract lesions. Because of the limited excitatory output from the RNm to flexor muscles that normally exists, loss of corticospinal output would leave control of flexors particularly weak. The changes in RNm organization reported in this study would help restore function to flexor muscles. These results support the hypothesis that the RNm is capable of reorganization that contributes to the recovery of forelimb motor function after pyramidal tract lesions.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Li ◽  
Diansheng Chen ◽  
Yubo Fan

Lower limb rehabilitation robots are designed to enhance gait function in individuals with motor impairments. Although numerous rehabilitation robots have been developed, only few of these robots have been used in practical health care, particularly in China. The objective of this study is to construct a lower limb rehabilitation robot and bridge the gap between research and application. Open structure to facilitate practical application was created for the whole robot. Three typical movement patterns of a single leg were adopted in designing the exoskeletons, and force models for patient training were established and analyzed under three different conditions, respectively, and then a control system and security strategy were introduced. After establishing the robot, a preliminary experiment on the actual use of a prototype by patients was conducted to validate the functionality of the robot. The experiment showed that different patients and stages displayed different performances, and results on the trend variations across patients and across stages confirmed the validity of the robot and suggested that the design may lead to a system that could be successful in the treatment of patients with walking disorders in China. Furthermore, this study could provide a reference for a similar application design.


Sign in / Sign up

Export Citation Format

Share Document