scholarly journals Rule Mining Using Particle Swarm Optimization for Intrusion Detection Systems

2020 ◽  
Vol 9 (2) ◽  
pp. 222
Author(s):  
Adel S. Eesa

Traditional data mining techniques are commonly used to build the Intrusion Detection Systems IDSs. They are designed on the basis of some probabilistic methods that still do not take into account some of the important properties of each feature in the dataset. We believe that each feature in the dataset has its own crucial role for its characteristics, which should be taken into consideration. In this work, instead of using the traditional technique or applying feature selection methods we proposed max and min boundary mining approach to solve Anomaly Intrusion Detection System AIDS problem. The main idea of the proposed method is to handle each feature in the dataset independently extracting two important properties represented by max-boundary and min-boundary. First, Particle Swarm Optimization PSO is used to search for the optimal max and min boundary for each feature in each class from the train data set. Second, the generated max and min boundaries are used as detection rules in order to detect anomalies from normal behavior using test dataset. KDD Cup 99 and the new version of KDD Cup 99 called NSL-KDD datasets are used to test the proposed model and its performance is compared with four well-known techniques such as J48, Naïve Bayes, PART and SMO. In addition, performance is also compared with some recent work. Experiment results show that the proposed model is outperformed all other algorithms in all terms (true positive rate, false positive rate, f-measure, Recall, Precision, MCC and AUC).

2021 ◽  
Vol 12 (2) ◽  
pp. 57-73
Author(s):  
Preethi D. ◽  
Neelu Khare

Network intrusion detection system (NIDS) plays a major role in ensuring network security. In this paper, the authors propose a PSO-DNN-based intrusion detection system. The correlation-based feature selection (CFS) applied for feature selection with particle swarm optimization (PSO) as search method and deep neural networks (DNN) for classification of network intrusions. The Adam optimizer is applied for optimizing the learning rate, and softmax classifier is used for classification. The experimentations were duly conducted on the standard benchmark NSL-KDD dataset. The proposed model is validated using 10-fold cross-validation and evaluated using the performance metrics such as accuracy, precision, recall, and F1-score. Also, the results are also compared with DNN and CFS+DNN. The experimental results show that the proposed model performs better compared with other methods considered for comparison.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yanyan Wang ◽  
Baiqing Sun

Efficiency and fairness are two important goals of disaster rescue. However, the existing models usually unilaterally consider the efficiency or fairness of resource allocation. Based on this, a multiobjective emergency resource allocation model that can balance efficiency and fairness is proposed. The object of the proposed model is to minimize the total allocating costs of resources and the total losses caused by insufficient resources. Then the particle swarm optimization is applied to solve the model. Finally, a computational example is conducted based on the emergency relief resource allocation after Ya’an earthquake in China to verify the applicability of the proposed model.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5609 ◽  
Author(s):  
Shahab S. Band ◽  
Saeid Janizadeh ◽  
Subodh Chandra Pal ◽  
Asish Saha ◽  
Rabin Chakrabortty ◽  
...  

This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70%) and testing (30%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document