scholarly journals The Role of Type III Interferons in Human Disease

2021 ◽  
Vol 44 (2) ◽  
pp. E5-18
Author(s):  
Aniko E. Malik ◽  
Thomas B. Issekutz ◽  
Beata Derfalvi

Purpose: This literature review summarizes the main immunological characteristics of type III interferons (IFN) and highlights the clinically relevant aspects and future therapeutic perspectives for these inflammatory molecules. Source: Relevant articles in PubMed MEDLINE from the first publication (2003) until 2020. N=101 articles were included in this review. Principal findings: Type III IFNs represent a relatively newly described inflammatory cytokine family. Although they induce substantially similar signalling to the well-known type I IFNs, significant functional differences make these molecules remarkable. Type III IFNs have extensive biological effects, contributing to the pathogenesis of several diseases and also offering new diagnostic and therapeutic approaches: 1) their potent anti-viral properties make them promising therapeutics against viral hepatitis and even against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the current coronavirus disease 2019 (COVID-19) pandemic; 2) imbalances in the IFN-λs contribute to several forms of chronic inflammation (e.g., systemic and organ-specific autoimmune diseases) and potentially predict disease progression and therapeutic response to biologic therapies; and 3) the antitumor properties of the type III IFNs open up new therapeutic perspectives against malignant diseases. Conclusion: Over the last 18 years, researchers have gathered extensive information about the presence and role of these versatile inflammatory cytokines in human diseases, but further research is needed to clarify the mechanistic background of those observations. Better understanding of their biological activities will permit us to use type III IFNs more efficiently in new diagnostic approaches and individualized therapies, consequently improving patient care.

2020 ◽  
Vol 20 ◽  
Author(s):  
Zihan Deng ◽  
Wenhui Hu ◽  
Hongbo Ai ◽  
Yueqi Chen ◽  
Shiwu Dong

: Skeletal system has been considered as a highly dynamic system, in which bone-forming osteoblasts and boneresorbing osteoclasts go through continuous remodeling cycle to maintain homeostasis of bone matrix. It has been well acknowledged that interferons (IFNs), acting as a subgroup of cytokines, not only make crucial effects on regulating immunology, but also could modulate the dynamic balance of bone matrix. In the light of different isoforms, IFNs have been divided into three major categories in terms of amino acid sequences, recognition of specific receptors and biological activities. Currently, type I IFNs consist of a multi-gene family with several subtypes, of which IFN-α exerts proosteoblastogenic effects to activate osteoblast differentiation and inhibits osteoclast fusion to maintain bone matrix integrity. Meanwhile, IFN-β suppresses osteoblast-mediated bone remodeling as well as exhibits inhibitory effects on osteoclast differentiation to attenuate bone resorption. While type II IFN constitutes the only type, IFN-γ, which exerts regulatory effects on osteoclastic bone resorption and osteoblastic bone formation by biphasic ways. Interestingly, type III IFNs are regarded as new members of IFN family composed of four members, including IFN-λ1 (IL-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B) and IFN-λ4, which have been certified to participate in bone destruction. However, the direct regulatory mechanisms underlying how type III IFNs modulate metabolic balance of bone matrix remains poorly elucidated. In this review, we have summarized functions of IFN family during physiological and pathological conditions and described the mechanisms by which IFNs maintain bone matrix homeostasis via affecting the osteoclast-osteoblast crosstalk. In addition, the potential therapeutic effects of IFNs on inflammatory bone destruction diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and infectious bone diseases are also well displayed, which are based on the predominant role of IFNs in modulating the dynamic equilibrium of bone matrix.


Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3813-3820 ◽  
Author(s):  
Valentina Nardi ◽  
Olaia Naveiras ◽  
Mohammad Azam ◽  
George Q. Daley

Abstract Interferon (IFN) is effective at inducing complete remissions in patients with chronic myelogenous leukemia (CML), and evidence supports an immune mechanism. Here we show that the type I IFNs (alpha and beta) regulate expression of the IFN consensus sequence-binding protein (ICSBP) in BCR-ABL–transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of BCR-ABL–induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the type I IFNs and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the antileukemic response of IFNs suggest new strategies for immunotherapy of CML.


2013 ◽  
Vol 87 (14) ◽  
pp. 7816-7827 ◽  
Author(s):  
R. Shivakoti ◽  
M. Siwek ◽  
D. Hauer ◽  
K. L. W. Schultz ◽  
D. E. Griffin

2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Jonathan Lopez ◽  
Marine Mommert ◽  
William Mouton ◽  
Andrés Pizzorno ◽  
Karen Brengel-Pesce ◽  
...  

IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3–dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4985
Author(s):  
Saima Usman ◽  
Naushin H. Waseem ◽  
Thuan Khanh Ngoc Nguyen ◽  
Sahar Mohsin ◽  
Ahmad Jamal ◽  
...  

Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.


1984 ◽  
Vol 246 (2) ◽  
pp. F111-F123 ◽  
Author(s):  
D. Marver

The kidney contains three classes of corticosteroid-binding proteins receptors. They include a mineralocorticoid-specific (Type I), a glucocorticoid-specific (Type II), and a corticosterone-specific (Type III) site. The Type I and Type III sites roughly parallel each other along the nephron, with maximal binding occurring in the late distal convoluted or connecting segment and the cortical and medullary collecting ducts. Type II sites occur throughout the nephron, with maximal concentrations appearing in the proximal tubule and the late distal convoluted-cortical collecting duct region. The function of the Type I sites in the connecting segment is unclear since chronic mineralocorticoid therapy does not influence the potential difference in this segment as it does in the cortical collecting tubule. Furthermore, the specific role of Type II versus Type III sites in the distal nephron is unknown. Finally, the possible influence of sodium on both latent and steroid-induced renal cortical and medullary Na-K-ATPase is discussed.


2007 ◽  
Vol 73 (6) ◽  
pp. 561-567 ◽  
Author(s):  
J.R. Salameh ◽  
Ladawn M. Talbott ◽  
Warren May ◽  
Bashar Gosheh ◽  
Parminder J.S. Vig ◽  
...  

Incisional hernias represent one of the most common complications of laparotomies. Previous investigations have suggested that a disorder in collagen fiber structure and production level may be an important pathologic cause of abdominal wall hernias. We hypothesized that a cross-examination of multiple extracellular matrix biomarkers might identify underlying defects contributing to the development of hernias. We examined two patient populations: patients with incisional hernias (presenting for hernia repair) and patients with no hernia after previous laparotomy (undergoing a second laparotomy). Patients with previous wound infections, open abdomens, or on steroids were excluded. Fascia samples were obtained from all patients at the time of their second operation and they were studied. Western blots and reverse transcriptase-polymerase chain reaction were used to determine the ratio of type I, III, and IV collagens, as well as matrix metalloproteinase 1 (MMP1) and MMP2 in both groups. Values of P < 0.05 were considered statistically significant. At the protein level, collagen I/III ratio was slightly decreased in patients with incisional hernias compared with those with no hernia, whereas it was significantly decreased at the mRNA transcript level (0.49 vs 1.03, P < 0.01, respectively). The MMP-1 mRNA transcripts were not different in incisional hernia (IH) versus nonincisional hernia, but the MMP-2 level was significantly increased in patients with IH. Reduced collagen I/III and MMP-1/MMP-2 ratios in IH might be consequence of the biological activities between key elements participating in the development of IH after laparotomies. The potential role of MMP-2–specific inhibitors in preventing IH is of significance for future studies.


2020 ◽  
Vol 205 (11) ◽  
pp. 2941-2950
Author(s):  
Jessica L. Turnier ◽  
J. Michelle Kahlenberg

2005 ◽  
Vol 62 (5) ◽  
pp. 833-840 ◽  
Author(s):  
Astrid C. Hammer ◽  
Jonathan W. Pitchford

Abstract Mixotrophy (=heterotrophy and photosynthesis by a single individual) is a common phenomenon in aquatic ecosystems, in particular under light- or nutrient-limitation. However, it is not usually considered in mathematical models of biological populations. This paper shows how different types of mixotrophy might be usefully incorporated into a general predator–prey model, and explores the consequences for plankton bloom dynamics and productivity. It is demonstrated, analytically and numerically, that even small levels of type III mixotrophy (a small fraction of the zooplankton also being involved in primary production) have significant effects on a system's equilibrium structure, stability, and short-term dynamics. Type III mixotrophy has a stabilizing effect on the system by reducing its excitability, i.e. its propensity to exhibit blooms. Compared with the non-mixotrophic benchmark, for a phytoplankton bloom to be triggered in a system with type III mixotrophy, a much larger perturbation is necessary. Type II mixotrophy (a small fraction of algae engage in phagotrophy) and type I mixotrophy (equal phagotrophy and phototrophy) are briefly discussed. The potential consequences for productivity are also studied. Our results indicate that the phytoplankton–zooplankton system becomes more productive in the presence of type III mixotrophy.


Sign in / Sign up

Export Citation Format

Share Document