scholarly journals Hesperidin Extracted from Citrus reticulata Blanco Protects Cardiac Mitochondria Against Hypoxia/Reoxygenation Injury

Author(s):  
Vu Thi Thu ◽  
Phuong Thien Thuong

This study was conducted to evaluate the protective effect of Hesperdin (Hes) extracted from Citrus reticulata Blanco on cardiac mitochondria in hypoxia/reoxygenation (HR) injury in vitro. Methods: H9C2 cardiomyocytes were cultured under normal (control), HR, and treatment conditions. The reactive oxygen species and calcium levels in experimental groups were analyzed by using suitable fluorescence kits. Results: The obtained results showed that the addition of Hes at dose of  0,01562 mg/mL sharply decreased the mitochondrial oxidative stress of H9C2 cells under HR conditions. In particular, Hes showed the remarkable efficiency in maintaing cellular calcium levels. In HR-exposed H9C2 cell group, the hydrogen peroxide and superoxide levels were highly increased compared to those in control group (1,54±0,06 and 1,74±0,38, p<0,05). HR also strongly induced the elevation of cytosolic Ca²⁺ and mitochondial Ca²⁺ of H9C2 cardiomyocytes with the values were 1,96±0,05% and 1,62±0,33 (ratio to control, p<0,05), respectively. Interestingly, post-hypoxic supplementation of Hes effectivelly abolished the negative incresement of these indicators with the lower levels of reactive oxygen species and the better modulation of Ca²⁺ homeostasis. Conclusion: The present results are pilot data on the effects of Hes in protecting cardiac mitochondria against HR injury.

2020 ◽  
Vol 14 (5) ◽  
pp. 155798832097005
Author(s):  
Xiaoping Li ◽  
Mengxia Ni ◽  
Shiyu Xing ◽  
Yi Yu ◽  
Yan Zhou ◽  
...  

Reproductive tract inflammation is considered an important cause of male infertility. Increased leukocytes in semen can produce many reactive oxygen species (ROS), which affect sperm function. The aim of this study is to identify the main source of ROS in seminal plasma and to assess the effect of ROS on leukocytes. Semen samples ( n = 20) with leukocyte concentration >1 × 106 were collected from a male infertility clinic. This study mainly compares the sperm function parameters of the normal group and the semen white blood cell group >1 × 106. The results identified that ROS in semen was closely related to sperm function parameters, and CD45+ leucocytes were the main source of ROS. Compared with the control group, the concentration of IL-2, IL-4, IL-6, IFN-γ, and TNF-α was higher in the experimental group. Leukocytes in semen may regulate the secretion of ROS through the mammalian target of rapamycin (mTOR) pathway. A considerable amount of ROS can upregulate the expression of IL-6 in leukocytes via the nuclear factor kappa-B (NF-kB) pathway.


Author(s):  
Arnab Banerjee ◽  
Debasmita Das ◽  
Rajarshi Paul ◽  
Sandipan Roy ◽  
Ankita Bhattacharjee ◽  
...  

AbstractBackgroundIn the present era, obesity is increasing rapidly, and high dietary intake of lipid could be a noteworthy risk factor for the occasion of obesity, as well as nonalcoholic fatty liver disease, which is the independent risk factor for type 2 diabetes and cardiovascular disease. For a long time, high-lipid diet (HLD) in “fast food” is turning into part of our everyday life. So, we were interested in fulfilling the paucity of studies by means of preliminary evaluation of these three alternative doses of HLD on a rat model and elucidating the possible mechanism of these effects and divulging the most alarming dose.MethodsThirty-two rats were taken, and of these, 24 were fed with HLD in three distinctive compositions of edible coconut oil and vanaspati ghee in a ratio of 2:3, 3:2 and 1:1 (n = 8), orally through gavage at a dose of 10 mL/kg body weight for a period of 28 days, whereas the other eight were selected to comprise the control group.ResultsAfter completion of the experiment, followed by analysis of data it was revealed that hyperlipidemia with increased liver and cardiac marker enzymes, are associated with hepatocellular injury and cardiac damage. The data also supported increased proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). As oxidative stress parameter increased in both liver and heart, there is also an increased in TNF-α due to an increased expression of inducible nitric oxide (NO) synthase, which led to a high production of NO. Moreover, HLD treatment explicitly weakens reasonability of hepatocytes and cardiomyocytes conceivably through G0/G1 or S stage capture or perhaps by means of enlistment of sub-G0/G1 DNA fragmentation and a sign of apoptosis.ConclusionsBased on the outcomes, it tends to be inferred that consequences of the present examination uncovered HLD in combination of 2:3 applies most encouraging systemic damage by reactive oxygen species generation and hyperlipidemia and necroapoptosis of the liver and heart. Hence, outcome of this study may help to formulate health care strategy and warns about the food habit in universal population regarding the use of hydrogenated and saturated fats (vanaspati ghee) in diet.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mingyan Hu ◽  
Ping Ye ◽  
Hua Liao ◽  
Manhua Chen ◽  
Feiyan Yang

Metformin is a first-line drug for the management of type 2 diabetes. Recent studies suggested cardioprotective effects of metformin against ischemia/reperfusion injury. However, it remains elusive whether metformin provides direct protection against hypoxia/reoxygenation (H/R) injury in cardiomyocytes under normal or hyperglycemic conditions. This study in H9C2 rat cardiomyoblasts was designed to determine cell viability under H/R and high-glucose (HG, 33 mM) conditions and the effects of cotreatment with various concentrations of metformin (0, 1, 5, and 10 mM). We further elucidated molecular mechanisms underlying metformin-induced cytoprotection, especially the possible involvement of AMP-activated protein kinase (AMPK) and Jun NH(2)-terminal kinase (JNK). Results indicated that 5 mM metformin improved cell viability, mitochondrial integrity, and respiratory chain activity under HG and/or H/R (P<0.05). The beneficial effects were associated with reduced levels of reactive oxygen species generation and proinflammatory cytokines (TNF-α, IL-1α, and IL-6) (P<0.05). Metformin enhanced phosphorylation level of AMPK and suppressed HG + H/R induced JNK activation. Inhibitor of AMPK (compound C) or activator of JNK (anisomycin) abolished the cytoprotective effects of metformin. In conclusion, our study demonstrated for the first time that metformin possessed direct cytoprotective effects against HG and H/R injury in cardiac cells via signaling mechanisms involving activation of AMPK and concomitant inhibition of JNK.


Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 994-999
Author(s):  
Y Niwa ◽  
T Sakane ◽  
Y Miyachi ◽  
T Kanoh ◽  
K Somiya

We assessed the generation of reactive oxygen species (ROS: O2-, H2O2, OH . , chemiluminescence) by neutrophils and monocytes from six patients with infectious mononucleosis, ten patients with other viral diseases, and ten normal controls. Neutrophils from infectious mononucleosis patients showed markedly decreased generation of all reactive oxygen species, compared with the two control groups; this abnormality persisted for four to eight weeks after disease onset. Monocytes from these patients generated normal levels of ROS. Normal neutrophils incubated with T lymphocytes from infectious mononucleosis patients generated significantly less of each ROS than did those incubated with T cells from either control group. T cell-mediated suppression of ROS generation required both OKT4+ cells from infectious mononucleosis patients and OKT8+ cells from either patients or normals. We conclude that the generation of reaction oxygen species in neutrophils is suppressed in patients with infectious mononucleosis, at least in part, by interacting subsets of T lymphocytes.


Author(s):  
Pei Zhang ◽  
Jing Liao ◽  
Xiaoju Wang ◽  
Zhengping Feng

IntroductionDiabetes and osteoporosis are common metabolic diseases. Abnormal high glucose can lead to the apoptosis of osteoblasts. Autophagy is a highly conserved cellular process that degrades proteins or organelles. In the present study, we comparatively analyzed the effects of high glucose and glucose fluctuation on apoptosis and autophagy of MC3T3-E1 osteoblasts.Material and methodsMC3T3-E1 cells were respectively treated with different concentrations of D-glucose: 5.5 mM for the control group, 25 mM for the high glucose group and 5.5/25 mM for the glucose fluctuation group.ResultsHigh glucose and glucose fluctuation decreased MC3T3-E1 proliferation and activated autophagy. Also, high glucose and glucose fluctuation might induce the production of reactive oxygen species, decline the mitochondrial membrane potential and trigger apoptosis. The differences in the glucose fluctuation treatment group were more significant. Moreover, N-acetylcysteine, an antioxidant reagent, dramatically eliminated the intracellular reactive oxygen species induced by high glucose and glucose fluctuation, and significantly inhibited the autophagy and apoptosis in MC3T3-E1 osteoblasts. Furthermore, treatment with chloroquine, an inhibitor of autophagy, significantly increased the apoptosis of MC3T3-E1 osteoblasts.ConclusionsHigh glucose, especially high glucose fluctuation, inhibits proliferation and promotes apoptosis and autophagy of MC3T3-E1 osteoblasts. This may occur through inducing oxidative stress and mitochondrial damage in the osteoblasts.


2021 ◽  
Vol 8 (32) ◽  
pp. 3023-3027
Author(s):  
Namrata Shrivastava ◽  
Vaibhav Shrivastava ◽  
Manish Pandey

BACKGROUND Infertility is defined as the inability to conceive after at 1 year of regular unprotected intercourse. Male contributes to almost half of infertility cases and in almost 30 % of cases, no definite aetiology is identified, and hence, male infertility is labelled idiopathic in these cases. Oxidative energy production mechanisms are almost always accompanied by reactive oxygen species (ROS), generation whose too much concentrations can lead to extensive protein damage and cytoskeletal modifications and inhibit cellular mechanisms. A number of laboratory techniques have been developed to evaluate oxidative stress by measuring ROS level in the semen. In recent times antioxidant supplements have been proposed as useful agents to increase the scavenging capacity of seminal plasma, controversy still surrounds their actual clinical utility. METHODS 34 male patients were included in this study. Reactive oxygen species detection was done by Flowcytometry using dichloroflurosecindiacetate (DCFH-DA). RESULTS The ROS in the patient group was found to be significantly higher 29.821 (5.6300 than the control group 22.162 (1.6331 having p value < 0.001). The ROS (29.821 ± 5.6300) was found to be significantly reduced after 3 months of antioxidant therapy which got reduced to 19.893 ± 4.2299 respectively. CONCLUSIONS Our study demonstrates that infertile men have significantly higher level of ROS (as measured by flowcytometry) & lower sperm count (oligospermia), decreased progressive & total motility and increased immotile sperms as compared to healthy fertile men. This study further proves that antioxidant therapy based on a combination of carnitine, zinc, coq10, lycopene and vitamin C & E for 3 months is associated with a decrease of ROS as measured by flowcytometry & a variable degree of improvement in above mentioned semen parameters. KEYWORDS Reactive Oxygen Species, Male Infertility


Sign in / Sign up

Export Citation Format

Share Document