scholarly journals Research on the Reasonable Spacing of Holes in Gas Drainage along Coal Seams in Consideration of the Superimposed Effect of Drainage

2016 ◽  
Vol 9 (1) ◽  
pp. 102-110
Author(s):  
Li Bo ◽  
◽  
Wei Jianping ◽  
Sun Donghui ◽  
Zhang Lulu ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 560 ◽  
Author(s):  
Yuexia Chen ◽  
Jiang Xu ◽  
Shoujian Peng ◽  
Fazhi Yan ◽  
Chaojun Fan

2013 ◽  
Vol 66 (2) ◽  
pp. 1221-1241 ◽  
Author(s):  
Liang Wang ◽  
Yuan-ping Cheng ◽  
Chao Xu ◽  
Feng-hua An ◽  
Kan Jin ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 613-617
Author(s):  
Jun Hua Xue ◽  
Sheng Xue

To address the issue of high gas emissions in mining gassy coal seams in underground coal mines, the concept of a three-entry panel layout with a retained goaf-edge gateroad and a “Y” type ventilation system is introduced in this paper. With the layout and ventilation system, distribution characteristics of methane concentration in the panel goaf is analyzed, technologies of gas drainage with boreholes drilled from the retained goaf-edge gateroad and into stress-relieved overlying and underlying seams are described, and an application case of such layout in a coal mine is also presented in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xue-Bo Zhang ◽  
Shuai-Shuai Shen ◽  
Xiao-Jun Feng ◽  
Yang Ming ◽  
Jia-jia Liu

To study the effects of the three deformation instability modes of gas drainage borehole on gas drainage, the deformation instability mechanism of soft coal seams is analyzed, three deformation instability modes are proposed for soft coal seams, namely, complete holes, collapse holes, and plug holes, and a solid-fluid coupling model incorporating dynamic change of borehole suction pressure is established. The results of the study show the following. (1) When there is no borehole deformation (i.e., complete borehole), the suction pressure loss of drainage system in the borehole is very small, whose effect on gas drainage can be neglected. (2) In case of borehole collapse, the suction pressure loss is big at the collapse segment, and the total suction pressure loss of the drainage system in the borehole is bigger than that in the complete hole. However, it is smaller than the suction pressure of the drainage system and exerts limited effect on gas drainage. As the borehole collapse deteriorates, the effective drainage section of the borehole becomes smaller, while the suction pressure loss in the borehole increases continuously; thus, the gas drainage effect continuously worsens. (3) In case of plug hole, a continuous medium forms between the plug segment coal body and the surrounding coal seam, the plug segment drainage pressure turns into coal-bed gas pressure, and effective drainage length of the borehole shortens, seriously affecting the gas drainage effect. The study carries important theoretical guiding significance for improving gas drainage effect and effectively preventing gas disasters.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiajia Liu ◽  
Jianmin Hu ◽  
Gaini Jia ◽  
Jianliang Gao ◽  
Dan Wang

The microscopic pore development of most coal seams in China leads to different permeability of coal seams and different gas drainage efficiency. Representative three coal rank coal samples were selected for saturation-centrifugation observation. The microscopic pore characteristics of coal samples were measured by nuclear magnetic resonance and liquid nitrogen adsorption methods. The experimental results showed that the coal samples were subjected to saturation-centrifugation and nuclear magnetic resonance (NMR) tests. It was found that the pores of the low-rank coal (XJ-1, XJ-2) were developed at various stages, and the connectivity between the pores was good and the permeability was also good. The adsorption pores of the intermediate coal (HB-1, HB-2) and high-rank coal (ZM-1, ZM-2) were relatively developed, and the connectivity between the pores was slightly poor. The parallel coal seam samples of coals of different ranks were better than the vertical bedding. The adsorption of liquid nitrogen showed that the low-order coal had more open pores and good gas permeability; the high-order coal had more openings at one end, more ink bottles, and narrow holes, and the gas permeability was not good. Studying the micropore structure and permeability of coals of different ranks has guiding significance for mastering the law of coal seam gas storage and transportation, extracting drilling arrangements, and increasing gas drainage and reducing greenhouse effect.


2017 ◽  
Vol 27 (5) ◽  
pp. 763-769 ◽  
Author(s):  
Gongda Wang ◽  
Ting Ren ◽  
Lang Zhang ◽  
Longyong Shu
Keyword(s):  

2020 ◽  
Vol 7 (3) ◽  
pp. 571-580 ◽  
Author(s):  
Wei Zhao ◽  
Kai Wang ◽  
Rong Zhang ◽  
Huzi Dong ◽  
Zhen Lou ◽  
...  

Abstract High concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas. However, the layered occurrence of coal seams with tectonically deformed sub-layers and intact sub-layers makes it difficult to effectively drain gas through commonly designed boreholes. In this study, the gas drainage performance in coal seams with different combinations of tectonically deformed sub-layers and intact sub-layers was numerically analyzed. The analysis results show that the gas drainage curve changes from a single-stage line to a dual-stage curve as the permeability ratios of Zone II (kII) and Zone I (kI) increase, raising the difficulty in gas drainage. Furthermore, a dual-system pressure decay model based on the first-order kinetic model was developed to describe the dual-stage characteristics of pressure decay curves with different permeability ratios. In the end, the simulation results were verified with reference to in-situ drainage data from literature. The research results are helpful for mines, especially those with layered coal seams comprising tectonically deformed sub-layers and intact sub-layers, to choose appropriate gas drainage methods and develop the original drainage designs for achieving better gas drainage performance.


Sign in / Sign up

Export Citation Format

Share Document