scholarly journals Wood Species Identification using Convolutional Neural Network (CNN) Architectures on Macroscopic Images

2019 ◽  
Vol 4 (3) ◽  
pp. 274
Author(s):  
Anindita Safna Oktaria ◽  
Esa Prakasa ◽  
Efri Suhartono

Indonesia is a country that is very rich in tree species that grow in forests. Wood growth in Indonesia consists of around 4000 species that have different names and characteristics. These differences can determine the quality and exact use of each type of wood. The procedure of standard identification is currently still carried out through visual observation by the wood anatomist. The wood identification process is very in need of the availability of wood anatomists, with a limited amount of wood anatomist will affect the result and the length of time to make an identification. This thesis uses an identification system that can classify wood based on species names with a macroscopic image of wood and the implementation of the Convolutional Neural Network (CNN) method as a classification algorithm. Supporting architecture used is AlexNet, ResNet, and GoogLeNet. Architecture is then compared to a simple CNN architecture that is made namely Kayu30Net. Kayu30Net architecture has a precision performance value reaching 84.6%, recall 83.9%, F1 score 83.1% and an accuracy of 71.6%. In the wood species classification system using CNN, it is obtained that AlexNet as the best architecture that refers to a precision value of 98.4%, recall 98.4%, F1 score 98.3% and an accuracy of 96.7%.

2019 ◽  
Vol 11 (23) ◽  
pp. 2788 ◽  
Author(s):  
Uwe Knauer ◽  
Cornelius Styp von Rekowski ◽  
Marianne Stecklina ◽  
Tilman Krokotsch ◽  
Tuan Pham Minh ◽  
...  

In this paper, we evaluate different popular voting strategies for fusion of classifier results. A convolutional neural network (CNN) and different variants of random forest (RF) classifiers were trained to discriminate between 15 tree species based on airborne hyperspectral imaging data. The spectral data was preprocessed with a multi-class linear discriminant analysis (MCLDA) as a means to reduce dimensionality and to obtain spatial–spectral features. The best individual classifier was a CNN with a classification accuracy of 0.73 +/− 0.086. The classification performance increased to an accuracy of 0.78 +/− 0.053 by using precision weighted voting for a hybrid ensemble of the CNN and two RF classifiers. This voting strategy clearly outperformed majority voting (0.74), accuracy weighted voting (0.75), and presidential voting (0.75).


Author(s):  
T. Mizoguchi ◽  
A. Ishii ◽  
H. Nakamura

<p><strong>Abstract.</strong> In this paper, we propose a new method for specifying individual tree species based on depth and curvature image creation from point cloud captured by terrestrial laser scanner and Convolutional Neural Network (CNN). Given a point cloud of an individual tree, the proposed method first extracts the subset of points corresponding to a trunk at breast-height. Then branches and leaves are removed from the extracted points by RANSAC -based circle fitting, and the depth image is created by globally fitting a cubic polynomial surface to the remaining trunk points. Furthermore, principal curvatures are estimated at each scanned point by locally fitting a quadratic surface to its neighbouring points. Depth images clearly capture the bark texture involved by its split and tear-off, but its computation is unstable and may fail to acquire bark shape in the resulting images. In contrast, curvature estimation enables stable computation of surface concavity and convexity, and thus it can well represent local geometry of bark texture in the curvature images. In comparison to the depth image, the curvature image enables accurate classification for slanted trees with many branches and leaves. We also evaluated the effectiveness of a multi-modal approach for species classification in which depth and curvature images are analysed together using CNN and support vector machine. We verified the superior performance of our proposed method for point cloud of Japanese cedar and cypress trees.</p>


2017 ◽  
Author(s):  
Tomohiro Mizoguchi ◽  
Akira Ishii ◽  
Hiroyuki Nakamura ◽  
Tsuyoshi Inoue ◽  
Hisashi Takamatsu

Author(s):  
C. Sothe ◽  
L. E. C. la Rosa ◽  
C. M. de Almeida ◽  
A. Gonsamo ◽  
M. B. Schimalski ◽  
...  

Abstract. The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced feature extraction and classification methods. Different from the traditional feature extraction methods, that highly depend on user’s knowledge, the convolutional neural network (CNN)-based method can automatically learn and extract the spatial-related features layer by layer. However, in order to capture significant features of the data, the CNN classifier requires a large number of training samples, which are hardly available when dealing with tree species in tropical forests. This study investigated the following topics concerning the classification of 14 tree species in a subtropical forest area of Southern Brazil: i) the performance of the CNN method associated with a previous step to increase and balance the sample set (data augmentation) for tree species classification as compared to the conventional machine learning methods support vector machine (SVM) and random forest (RF) using the original training data; ii) the performance of the SVM and RF classifiers when associated with a data augmentation step and spatial features extracted from a CNN. Results showed that the CNN classifier outperformed the conventional SVM and RF classifiers, reaching an overall accuracy (OA) of 84.37% and Kappa of 0.82. The SVM and RF had a poor accuracy with the original spectral bands (OA 62.67% and 59.24%) but presented an increase between 14% and 21% in OA when associated with a data augmentation and spatial features extracted from a CNN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron N. Shugar ◽  
B. Lee Drake ◽  
Greg Kelley

AbstractAn innovative approach for the rapid identification of wood species is presented. By combining X-ray fluorescence spectrometry with convolutional neural network machine learning, 48 different wood specimens were clearly differentiated and identified with a 99% accuracy. Wood species identification is imperative to assess illegally logged and transported lumber. Alternative options for identification can be time consuming and require some level of sampling. This non-invasive technique offers a viable, cost-effective alternative to rapidly and accurately identify timber in efforts to support environmental protection laws and regulations.


Sign in / Sign up

Export Citation Format

Share Document