A new lithostratigraphic framework for portions of the Pongola Supergroup within the Nkandla sub-basin, southern Kaapvaal Craton, South Africa; insights into Mozaan Group stratigraphy

Author(s):  
N. Hicks ◽  
D.J.C. Gold ◽  
M. Ncume ◽  
L. Hoyer

Abstract A revised lithostratigraphic framework for Mozaan Group-equivalent strata within the Nkandla sub-basin is presented based on new field data, remote sensing and genetic sequence stratigraphic interpretations. Although previous literature has suggested that no Mozaan Group lithologies were deposited within the sub-basin, reinterpretations presented here indicate that 90% of the lithostratigraphy developed within the main basin occurs within the Nkandla and Mhlatuze inliers. Mozaan Group units previously defined as the Vutshini and Ekombe formations are correlated with stratigraphy from the lowermost Sinqeni Formation to the Gabela Formation. Although thinner than units within the type area in the main basin, thicknesses of the Sinqeni Formation are comparable to those observed within the White Mfolozi Inlier. A ~1 000 m composite reference profile is measured within the Mdlelanga Syncline of the Nkandla Inlier. Further profiles were measured for sequences in the Gem-Vuleka Syncline of the Nkandla Inlier, as well as within the Mhlatuze Inlier. These latter profiles, however, host only lower Mozaan Group strata. In all sections the basal portion of the sequence comprises two quartz arenite units, separated by a ferruginous shale, which hosts minor iron formation interbeds. This predominantly coarse-grained lower sequence is overlain by a shale-dominated succession with multiple sandstone interbeds. A prominent coarse-grained quartz arenite unit forms a distinct marker in the middle portion of the sequence. This is overlain by a sequence of shales and sandstones with two prominent igneous units present. Genetic sequence stratigraphic interpretations indicate cyclical deposition of dominantly shallow marine sediments with condensed sections, marked by iron formations or ferruginous shales, denoting periods of marine highstand along the southeastern margin of the Kaapvaal Craton. The evidence of Mozaan Group stratigraphy within the Nkandla sub-basin supports a passive margin tectonic model whereby deposition occurred in an arcuate shallow continental margin which opened to the southeast. The extension of Mozaan Group strata into the Nkandla sub-basin suggests that the Mozaan Basin likely formed a single depository rather than separate sub-basins as previously proposed.

Author(s):  
N. Hicks ◽  
D.J.C. Gold

Abstract A new lithostratigraphic framework based upon a review of historic data, field mapping and remote sensing, including aerial photography, high-resolution airborne aeromagnetic and radiometric data, is proposed for the Archaean geology along the southeastern margin of the Kaapvaal Craton, South Africa. A synthesis of new and existing data reveals that previously accepted lithostratigraphic schemes require complete revision, with reinterpretations identifying multiple major shear zones and previously unidentified granitoid successions along the margin of the craton. In this new lithostratigraphic framework, lithologies of the Southern Syncline previously correlated with the Nsuze Group of the Pongola Supergroup, are redefined as greenstone lithologies associated with the Ilangwe Greenstone Belt. The geology of the Nkandla region can be subdivided into five distinct geophysical domains including: (i) an extension of the Ilangwe Greenstone Belt, (Domain 1) which is subdivided into; a lower volcanic succession, the Thathe Formation, comprising pillow and amygdaloidal volcanics; the adjoining Sabiza Formation, comprising pillow volcanics exposed in the southeast of the study area; the volcano-sedimentary Mtshwili Formation, which overlies the Thathe and Sabiza formations, consisting of quartz (sericite) schist, phyllite, metavolcanics and iron formation; the Nomangci Formation, which occurs as a region of highly deformed quartz-kyanite-sericite schists, and the Simbagwezi Formation, which comprises maroon to green phyllites and schists in the north of the study area. (ii) granitoids of the Impisi Granitoid Suite (Domain 2) which border the greenstone succession to the north, intruding the Nomangci and Simbagwezi formations. (iii) a southern complex of sheared granitoids termed the Umgabhi Granitoid Suite (Domain 3), which intrudes the Thathe, Sabiza and Mtshwili formations. (iv) The two remaining domains, comprise the Mesoproterozoic Mfongosi and Ntingwe Groups (Domain 4) and Mesoarchaean volcano-sedimentary sequences of the Pongola Supergroup (Domain 5).


Author(s):  
Kamil Ahmed Qureshi ◽  
Muhammad Raza Shah ◽  
Ishaque Ali Meerani ◽  
Shah Fahad ◽  
Hamid Hussain ◽  
...  

The Hangu Formation (Paleocene) consists of sandstone, siltstone, carbonaceous shale, coal and laterite. It is well exposed in the Trans Indus Surghar range and the southern Hazara basin. The sandstone is yellowish brown, fine to coarse grained and medium to thick bedded. The sandstone of the Hangu Formation is classified as quartz arenite on the Q-F-L diagram. It is mostly grain supported and are cemented by silica cement. The study of different stratigraphic sections reveal that Hangu Formation can be sub-divided into a number of lithofacies on the basis of sedimentary structures and lithological variations. These include lateritic lithofacies, coal and carbonaceous shale, cross-bedded sandstone, bioclastic limestone and bioturbated sandstone. All these lithofacies are well-developed in the Baroch Nala section of the Surghar range except the lateritic lithofacies which contains a thin bed of ferruginous clay. In the studied sections of the Hazara basin, the lateritic lithofacies is the only well-developed lithofacies present in the area. The coal occurs at two stratigraphic levels in the Baroch Nala section. The lower coal seam is thick and its chemical study indicates higher calorific value and carbon content than the upper coal seam and with low moisture/ash content. On the basis of the calorific value, the coal of the Hangu Formation is characterized as high volatile bituminous. The degree of laterization is strong in the Langrial and Khanpur sections and moderate in Baroch Nala section.


2019 ◽  
Vol 474 (474) ◽  
pp. 59-72
Author(s):  
Leszek KRZEMIŃSKI ◽  
Ewa KRZEMIŃSKA ◽  
Janina Wiszniewska

Drilling at Mońki IG-2 and Zabiele IG-1 in the Mazowsze domain has intersected mature quartz-rich metasedimentary rocks belonging to the basement of NE Poland, described so far as a Biebrza complex. The geochemical composition of these rocks is characteristic of a passive margin. The subarkose–quartz arenite underwent low-T metamorphism, but preserved textures typical for the fluvial sediments. The detrital material in range 1.68–2.11 Ga was provided from surrounding late Paleoproterozoic margins of the Fennoscandia and Sarmatia. The maximum depositional age probably did not exceed 1.6 Ga. A previously suggested correlation with Mesoproterozoic molasse-type deposits of the Jotnian formation has not been confirmed. It seems more likely that the sediments formed after Fennoscandia-Sarmatia collision (i.e. termination of Svecofennian orogeny) but before denudation of the Mesoproterozoic Mazury AMCG intrusions.


2003 ◽  
Vol 40 (2) ◽  
pp. 149-176 ◽  
Author(s):  
O Salad Hersi ◽  
D Lavoie ◽  
G S Nowlan

Detailed lithostratigraphic mapping of the Beekmantown Group of southwestern Quebec has refined the field application of the previously proposed tripartite division of the group (i.e., Theresa, Beauharnois, and Carillon formations). The group is a peritidal-dominated succession that accumulated on the epicontinental Laurentian passive margin. Biostratigraphic data based on conodonts from this group indicate an Early to early Middle Ordovician age and are partially time-correlative with the Wallace Creek to Naylor Ledge strata of the Philipsburg Group, southern Quebec. This conodont biostratigraphy sheds new light on the temporal evolution and depositional framework of the Beekmantown platform. The platform evolved as a distally steepened ramp during deposition of the Theresa Formation and the Ogdensburg Member of the Beauharnois Formation (early to middle Ibexian). Correlative strata of the Philipsburg Group include the Wallace Creek and Morgan Corner formations, which represent outer platform sediments. The coarse-grained sandstone of the Theresa Formation accumulated in the innermost platform, whereas coarse-grained carbonates of the Ogdensburg Member indicate open-marine, subtidal to intertidal carbonate sand shoals. By late Ibexian, the platform developed a pronounced margin where thrombolites flourished under high-energy conditions. These are represented by the thrombolite-rich Hasting Creek and Naylor Ledge formations of the Philipsburg Group. Consequently, a broad lagoon formed on the lee side of the platform margin, where low-energy conditions prevailed and accumulation of burrow-mottled dolostones of the Huntingdon Member of the upper Beauharnois Formation took place. The lagoon became more restricted during the latest stages of the basin fill (Whiterockian), and high intertidal to supratidal sediments of the Carillon Formation were deposited.


2005 ◽  
Vol 22 (9-10) ◽  
pp. 1185-1200 ◽  
Author(s):  
P.M. Shannon ◽  
M.S. Stoker ◽  
D. Praeg ◽  
T.C.E. van Weering ◽  
H. de Haas ◽  
...  

2003 ◽  
Vol 1 ◽  
pp. 217-230 ◽  
Author(s):  
G.F. Waldemar Herngreen ◽  
Wim F.P. Kouwe ◽  
Theo E. Wong

A recent revision of the lithostratigraphy of the Netherlands has triggered an extensive re-evaluation of existing ideas on the Jurassic structural and depositional history. Significant advances can be attributed to the incorporation of sequence stratigraphic concepts. In the course of the Triassic and Jurassic, structural complexity increased progressively. The Jurassic sedimentary succession can be subdivided into three depositional megasequences. Megasequence I (Rhaetian– Aalenian) reflects the period between the so-called early and mid-Cimmerian tectonic phases. Megasequence II (Aalenian – Middle Callovian) covers the period of activity of the mid-Cimmerian phase. Megasequence III (Middle Callovian – Ryazanian) corresponds with the period between the mid-Cimmerian and late Cimmerian phases (particularly after pulse II). In this latter megasequence, six stages (IIIa–f) are recognised. Sediments deposited during the Rhaetian and Ryazanian bear a stronger affinity with the Jurassic succession than with Triassic and Cretaceous sediments respectively. These stages are thus treated here as an integral part of the Jurassic succession. During the Rhaetian–Bajocian the area subsided relatively uniformly. A sheet of predominantly fine-grained marine sediments of great lateral uniformity was deposited. During the Toarcian, in particular, basin circulation was largely restricted. The cooling that followed the thermal Central North Sea dome uplift triggered an important extensional phase during the Aalenian–Callovian. The rift phase resulted in the formation of several smaller basins, each with its own characteristic depositional succession. The basins fall into three structural provinces: the eastern province (Lower Saxony Basin, E–W-striking); the northern province (Central Graben, N–S-striking); and the southern–central system (Roer Valley Graben – Broad Fourteens, with a strong NW–SE strike). The mid-Cimmerian event started to affect the Dutch basins during the Bajocian. Sedimentation ceased in the Dutch Central Graben while it persisted in a predominantly coarse-grained, shallow marine facies in the southern basins (Roer Valley Graben, West Netherlands Basin). Extensional tectonics in the Central Graben were initiated during the Middle Callovian, with the deposition of continental sediments. During the Oxfordian–Kimmeridgian, marine incursions gradually became more frequent. Marine deposition in the other basins in the south persisted into the Oxfordian, at which time deposition became predominantly continental. Marine conditions gradually returned in the south during the Ryazanian–Barremian, with a series of advancing partial transgressions from the north. The present- day distribution of Jurassic strata in the Netherlands was determined largely by erosion associated with Late Cretaceous – Paleocene uplift.


Author(s):  
Antônio Carlos Pedrosa-Soares ◽  
Carlos Maurício Noce ◽  
Fernando Flecha de Alkmim ◽  
Luiz Carlos da Silva ◽  
Marly Babinski ◽  
...  

The Araçuaí Fold Belt was defined as the southeastern limit of the São Francisco Craton in the classicalpaper published by Fernando Flávio Marques de Almeida in 1977. This keystone of the Brazilian geologicliterature catalyzed important discoveries, such as of Neoproterozoic ophiolites and a calc-alkaline magmaticarc, related to the Araçuaí Belt and paleotectonic correlations with its counterpart located in Africa (the WestCongo Belt), that provided solid basis to define the Araçuaí-West-Congo Orogen by the end of the 1990thdecade. After the opening of the Atlantic Ocean in Cretaceous times, two thirds of the Araçuaí-West-CongoOrogen remained in the Brazil side, including records of the continental rift and passive margin phases ofthe precursor basin, all ophiolite slivers and the whole orogenic magmatism formed from the pre-collisionalto post-collisional stages. Thus, the name Araçuaí Orogen has been applied to the Neoproterozoic-Cambrianorogenic region that extends from the southeastern edge of the São Francisco Craton to the Atlantic coastlineand is roughly limited between the 15º and 21º S parallels. After 30 years of systematic geological mappingtogether with geochemical and geochronological studies published by many authors, all evolutionary stagesof the Araçuaí Orogen can be reasonably interpreted. Despite the regional metamorfism and deformation, thefollowing descriptions generally refer to protoliths. All mentioned ages were obtained by U-Pb method onzircon. The Macaúbas Group records rift, passive margin and oceanic environments of the precursor basinof the Araçuaí Orogen. From the base to the top and from proximal to distal units, this group comprises thepre-glacial Duas Barras and Rio Peixe Bravo formations, and the glaciogenic Serra do Catuni, Nova Auroraand Lower Chapada Acauã formations, related to continental rift and transitional stages, and the diamictitefreeUpper Chapada Acauã and Ribeirão da Folha formations, representing passive margin and oceanicenvironments. Dates of detrital zircon grains from Duas Barras sandstones and Serra do Catuni diamictitessuggest a maximum sedimentation age around 900 Ma for the lower Macaúbas Group, in agreement withages yielded by the Pedro Lessa mafic dikes (906 ± 2 Ma) and anorogenic granites of Salto da Divisa (875 ±9 Ma). The thick diamictite-bearing marine successions with sand-rich turbidites, diamictitic iron formation,mafic volcanic rocks and pelites (Nova Aurora and Lower Chapada Acauã formations) were depositedfrom the rift to transitional stages. The Upper Chapada Acauã Formation consists of a sand-pelite shelfsuccession, deposited after ca. 864 Ma ago in the proximal passive margin. The Ribeirão da Folha Formationmainly consists of sand-pelite turbidites, pelagic pelites, sulfide-bearing cherts and banded iron formations,representing distal passive margin to oceanic sedimentation. Gabbro and dolerite with plagiogranite veinsdated at ca. 660 Ma, and ultramafic rocks form tectonic slices of oceanic lithosphere thrust onto packagesof the Ribeirão da Folha Formation. The pre-collisional, calc-alkaline, continental magmatic arc (G1 Suite,630-585 Ma) consists of tonalites and granodiorites, with minor diorite and gabbro. A volcano-sedimentarysuccession of this magmatic arc includes pyroclastic and volcaniclastic rocks of dacitic composition datedat ca. 585 Ma, ascribed to the Palmital do Sul and Tumiritinga formations (Rio Doce Group), depositedfrom intra-arc to fore-arc settings. Detrital zircon geochronology suggests that the São Tomé wackes (RioDoce Group) represent intra-arc to back-arc sedimentation after ca. 594 Ma ago. The Salinas Formation, aconglomerate-wacke-pelite association located to northwest of the magmatic arc, represents synorogenicsedimentation younger than ca. 588 Ma. A huge zone of syn-collisional S-type granites (G2 Suite, 582-560Ma) occurs to the east and north of the pre-collisional magmatic arc, northward of latitude 20º S. Partialmelting of G2 granites originated peraluminous leucogranites (G3 Suite) from the late- to post-collisionalstages. A set of late structures, and the post-collisional intrusions of the S-type G4 Suite (535-500 Ma) andI-type G5 Suite (520-490 Ma) are related to the gravitational collapse of the orogen. The location of themagmatic arc, roughly parallel to the zone with ophiolite slivers, from the 17º30’ S latitude southwardssuggests that oceanic crust only developed along the southern segment of the precursor basin of the Araçuaí-West-Congo Orogen. This basin was carved, like a large gulf partially floored by oceanic crust, into the SãoFrancisco-Congo Paleocontinent, but paleogeographic reconstructions show that the Bahia-Gabon cratonicbridge (located to the north of the Araçuaí Orogen) subsisted since at least 1 Ga until the Atlantic opening.This uncommon geotectonic scenario inspired the concept of confined orogen, quoted as a new type ofcollisional orogen in the international literature, and the appealing nutcracker tectonic model to explain theAraçuaí-West-Congo Orogen evolution. 


Sign in / Sign up

Export Citation Format

Share Document