scholarly journals Understanding Radix Angelica sinensis Blood Replenishing mechanisms on Blood Deficiency Rats Based on a UPLC-Q/TOF-MS Metabolomics and Network Pharmacology

2021 ◽  
Vol 15 (4) ◽  
pp. 267-280
Author(s):  
Xiujuan Y ang ◽  
Yi Deng ◽  
Zhijun Y ang ◽  
Shuo Li ◽  
Yunxiang Hai ◽  
...  

Radix Angelica sinensis (RAS) is a famous Chinese medicine with hematinic effects and has been applied for the treatment of blood deficiency syndrome for many years. Previous studies have indicated that RAS has beneficial effects in the treatment of hemolytic anemia. The hemolytic anemia/blood deficiency syndrome is a common syndrome that is often presented in most traditional Chinese medicine (TCM) clinics. Based on routine blood indicators, metabolomics analysis was conducted to investigate the mechanism of RAS in the treatment of hemolytic anemia. Multivariate and univariate statistical analysis were used to identify potential biomarkers in the serum. On administering RAS to the haemololitic anaemic rat, the levels of WBC, RBC, HGB, and PLT in AG tended to shift toward that of the control group. Additionally, all the 26 metabolites such as cholic acid, succinic acid and orotate which are regulated by blood deficiency appeared normal through the five metabolic pathways, such as linoleic acid metabolism, alanine, aspartic acid and glutamate metabolism, pyrimidine metabolism, arginine and proline metabolism. Thus, three metabolic pathways predicted by the network pharmacology were consistent with the metabolism pathway of Angelica sinensis: linoleic acid metabolism, arginine and proline metabolism, tryptophan metabolism. The integrated metabolomics and network pharmacology comprehensively improved the understanding of the physiological and metabolic state of an organism. The possible hematopoietic effects and underlying mechanism of action on hemolytic anemia rats after lavage with RAS water extracts, could potentially be elucidated by combining pharmacology with untargeted metabolomics. These pointed out the significance of metabolomics as a valuable tool for studying the essence of Chinese medicine’s syndrome theory and the mechanism of RAS under anti-blood deficiency syndrome.

Metabolites ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 112 ◽  
Author(s):  
Changzheng Guo ◽  
Yanfeng Xue ◽  
Hossam-eldin Seddik ◽  
Yuyang Yin ◽  
Fan Hu ◽  
...  

Maternal metabolic disorders in ewes induced by energy deficiency have a detrimental effect on the maternal health and lambs. However, the dynamic processes of metabolic disorders are unknown. Therefore, this study attempted to explore the dynamic changes of maternal metabolism based on metabolomics approach during energy deficiency in pregnant ewes. Twenty pregnant Hu sheep were fed a basic diet or a 70% restricted basic diet. The HPLC-MS platform was applied to identify blood metabolites. Principal component analysis of blood samples based on their metabolic profile showed that blood samples of feed restriction group differed after the treatment. In particular, when comparing both groups, there were 120, 129, and 114 differential metabolites at day 5, day 10, and day 114 between the two groups, respectively. Enrichment analysis results showed that four metabolic pathways (glycerophospholipid metabolism, linoleic acid metabolism, arginine and proline metabolism, and aminoacyl-tRNA biosynthesis) at day 5, four metabolic pathways (aminoacyl-tRNA biosynthesis, aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and citrate cycle) at day 10, and nine metabolic pathways (aminoacyl-tRNA biosynthesis, synthesis and degradation of ketone bodies, glycerophospholipid metabolism, butanoate metabolism, linoleic acid metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, and arginine and proline metabolism) at day 15 were significantly enriched between the two groups. These findings revealed temporal changes of metabolic disorders in pregnant ewes caused by severe feed restriction, which may provide insights into mitigation measures.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 82 ◽  
Author(s):  
Min Hao ◽  
De Ji ◽  
Lin Li ◽  
Lianlin Su ◽  
Wei Gu ◽  
...  

Rhizome of Curcuma wenyujin, which is called EZhu in China, is a traditional Chinese medicine used to treat blood stasis for many years. However, the underlying mechanism of EZhu is not clear at present. In this study, plasma metabolomics combined with network pharmacology were used to elucidate the therapeutic mechanism of EZhu in blood stasis from a metabolic perspective. The results showed that 26 potential metabolite markers of acute blood stasis were screened, and the levels were all reversed to different degrees by EZhu preadministration. Metabolic pathway analysis showed that the improvement of blood stasis by Curcuma wenyujin rhizome was mainly related to lipid metabolism (linoleic acid metabolism, ether lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism) and amino acid metabolisms (tryptophan metabolism, lysine degradation). The component-target-pathway network showed that 68 target proteins were associated with 21 chemical components in EZhu. Five metabolic pathways of the network, including linoleic acid metabolism, sphingolipid metabolism, glycerolipid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis, were consistent with plasma metabolomics results. In conclusion, plasma metabolomics combined with network pharmacology can be helpful to clarify the mechanism of EZhu in improving blood stasis and to provide a literature basis for further research on the therapeutic mechanism of EZhu in clinical practice.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1021
Author(s):  
Li Guo ◽  
Sufang Zhang ◽  
Fu Liu ◽  
Xiangbo Kong ◽  
Zhen Zhang

Research Highlights: The molecular mechanisms underlying woody plant resistance upon oviposition by herbivores remain unclear, as studies have focused on herbaceous plants. The effect of oviposition on gene expression in neighboring plants has also not been reported. Elucidating these molecular responses can help cultivate insect-resistant trees. Background and Objectives: Oviposition by herbivorous insects acts as an early warning signal, inducing plant resistance responses. Here, we employed poplar as a model woody plant to elucidate gene expression and the molecular mechanisms underlying plant resistance after oviposition by Micromelalopha sieversi (Staudinger) (Lepidoptera: Notodontidae). Materials and Methods: The differences in gene expression of two Populus section Aigeiros clones (‘108’ (Populus × euramericana ‘Guariento’) and ‘111’ (Populus × euramericana ‘Bellotto’)) were analyzed via high-throughput sequencing of oviposited, neighboring, and control plants. Results: We obtained 304,526,107 reads, with an average length of 300 bp and a total size of 40.77 Gb. Differentially expressed genes (DEGs) in gene ontology terms of biological process, cellular component, and molecular function were mainly enriched in the “cell part”, “catalytic”, and “metabolic process” functions. Moreover, DEGs were mainly enriched in the following pathways: plant-pathogen interaction, linoleic acid metabolism, and cyanoamino acid metabolism (108-O vs. 108-C); metabolic pathways, photosynthesis, photosynthesis-antenna proteins, nitrogen metabolism, and linoleic acid metabolism (111-O vs. 111-C); metabolic pathways and biosynthesis of secondary metabolites (111-N vs. 111-C); no pathways were significantly enriched in 108-N vs. 108-C. Up-regulated defense genes were associated with pathogenesis-related protein function, innate immune regulation, and biological stress response, with differences in specific genes. All genes related to photosynthetic activity were significantly down-regulated in oviposited and neighboring leaves of the two clones. Conclusions: Oviposited and neighboring ‘108’ and ‘111’ plants exhibited varying degrees of resistance upon oviposition, involving the up-regulation of various defense genes, decreased photosynthesis and nutrient accumulation, and increased secondary metabolic synthesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Nankun Qin ◽  
Yue Jiang ◽  
Wenjun Shi ◽  
Liting Wang ◽  
Lingbo Kong ◽  
...  

Hyperuricemia (HUA) as a metabolic disease is closely associated with metabolic disorders. The etiology and pathogenesis of HUA are not fully understood, so there is no radical cure so far. Metabolomics, a specialized study of endogenous small molecule substances, has become a powerful tool for metabolic pathway analysis of selected differential metabolites, which is helpful for initially revealing possible development mechanisms of various human diseases. Twenty HUA patients and 20 healthy individuals participated in the experiment, and ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was employed to investigate serum samples to find differential metabolites. The statistical techniques used were principal component analysis and orthogonal partial least-squares discriminant analysis. The differences in metabolomics results of samples after pretreatment with different solvents were compared, 38, 20, 26, 28, 33, 50, and 40 potential differential metabolites were found, respectively, in HUA patient samples, and each group involved different metabolic pathways. Repetitive metabolites were removed, 138 differential metabolites in HUA serum were integrated for analysis, and the human body was affected by 7 metabolic pathways of glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and α-linolenic acid metabolism. In this work, the metabolomics approach based on UPLC-Q-TOF/MS was employed to investigate serum metabolic changes in HUA patients, 138 potential differential metabolites related to HUA were identified, which provided associations of lipids, amino acids, fatty acids, organic acids, and nucleosides profiles of HUA individuals. Metabolic pathways involved in glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and a-linolenic acid metabolism shed light on the understanding of the etiology and pathogenesis process of HUA.


Sign in / Sign up

Export Citation Format

Share Document