Applying Machine Learning to Enhance Runway Safety Through Runway Excursion Risk Mitigation

2021 ◽  
pp. 1-15
Author(s):  
Edwin V. Odisho ◽  
Dothang Truong ◽  
Robert E. Joslin
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3340 ◽  
Author(s):  
Ehsan Harirchian ◽  
Tom Lahmer ◽  
Vandana Kumari ◽  
Kirti Jadhav

The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 Düzce Earthquake in Turkey, where the building’s data consists of 22 performance modifiers that have been implemented with supervised machine learning.


2021 ◽  
Vol 11 (16) ◽  
pp. 7540
Author(s):  
Ehsan Harirchian ◽  
Vandana Kumari ◽  
Kirti Jadhav ◽  
Shahla Rasulzade ◽  
Tom Lahmer ◽  
...  

A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings’ present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings.


Astrodynamics ◽  
2021 ◽  
Author(s):  
Thomas Uriot ◽  
Dario Izzo ◽  
Luís F. Simões ◽  
Rasit Abay ◽  
Nils Einecke ◽  
...  

AbstractSpacecraft collision avoidance procedures have become an essential part of satellite operations. Complex and constantly updated estimates of the collision risk between orbiting objects inform various operators who can then plan risk mitigation measures. Such measures can be aided by the development of suitable machine learning (ML) models that predict, for example, the evolution of the collision risk over time. In October 2019, in an attempt to study this opportunity, the European Space Agency released a large curated dataset containing information about close approach events in the form of conjunction data messages (CDMs), which was collected from 2015 to 2019. This dataset was used in the Spacecraft Collision Avoidance Challenge, which was an ML competition where participants had to build models to predict the final collision risk between orbiting objects. This paper describes the design and results of the competition and discusses the challenges and lessons learned when applying ML methods to this problem domain.


2021 ◽  
Author(s):  
Brian LeCompte ◽  
Tosin Majekodunmi ◽  
Mike Staines ◽  
Gareth Taylor ◽  
Barry Zhang ◽  
...  

Abstract The objective of the paper is to describe the application of artificial intelligence software to predict formation evaluation logs (compressional sonic, shear sonic and density) using only gamma ray, and resistivity log data and drilling dynamics data as received by the electronic drilling recorder (EDR). The software was applied real-time as a well was being drilled in deepwater Gulf of Mexico. Thorough examination and conditioning of EDR and wireline data give way to a training model construction for the artificial neural network (ANN) using full suites of log-data in offset wells. Next, a neural network architecture and associated hyperparameters are chosen and tested. The fully trained and validated model is applied to the gamma ray, resistivity and EDR of the target well while drilling. Real-time EDR and wireline data flow via WITSML from rig to cloud and data is delivered to the client. The results of the study indicate the simulated log data were comparable to those measured from conventional logging tools over the study area. In both blind well tests the density agreed with the conventional log results within 1.1 % and the compressional within 2.51 % (Figure 1). Each of these is well within the range of variance expected of repeat runs of a conventional logging tool. A primary driver for near real-time logs was to confirm structural depth of the target sands along the well bore. There was a depleted sand below the expected TD of the well that, if encountered, could have led to total losses and possible loss of the wellbore. It was critical to have real-time logs to characterize the sands above the depleted sand, using every possible petrophysical and geologic character to refine the log correlation. This integration of all the logs provided the best interpretation of the sand quality and led toward the completion decision. AI-based logs are a highly cost-effective alternative to LWD logging. It presents an environmentally friendly approach as there is no logging personnel on-site and no expensive and potentially dangerous nuclear sources in the hole The deployment of this patented, machine learning-driven, real-time simulation of formation evaluation logs is unique in using only gamma ray, resistivity and drilling data. It is particularly useful in the overburden section where formation evaluation tools are often not run for cost reasons, in side-tracks, in HP/HT settings and operational risk mitigation. It provides additive data for other petrophysical/QI/rock property analyses including seismic inversion, shale content, porosity, log QC/editing, real-time LWD, drilling optimization, etc.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241286
Author(s):  
Irene Unceta ◽  
Jordi Nin ◽  
Oriol Pujol

2021 ◽  
Author(s):  
Rebecca Nye ◽  
Camilo Mejia ◽  
Evgeniya Dontsova

Abstract Recent developments in artificial intelligence (AI) have enabled upstream exploration and production companies to make better, faster and accurate decisions at any stage of well construction, while reducing operational expenditure and risk, increasing logistic efficiencies. The achieved optimization through digitization at the wellsite will significantly reduce the carbon emissions per well drilled when fully embraced by the industry. In addition, an industry pushed to drill in more challenging environments, they must embrace safer and more practical methods. An increase in prediction techniques, to generate synthetic formation evaluation wellbore logs, has unlocked the ability to implement a combination of predictive and prescriptive analytics with petrophysical and geochemical workflows in real time. The foundation of the real time automation is based on advanced machine learning (ML) techniques that are deployed via cloud connectivity. Three levels of logging precision are defined in the automated workflow based on the data inputs and machine learning models. The first level is the forecasting ahead of the bit that implements advanced machine learning using historical data, aiding proactive operational decisions. The second level has improved precision by incorporating real time drilling measurements and providing a credible contingency to for wellbore logging program. The last level incorporates petrophysical workflows and geochemical measurements to achieve the highest precision for logging prediction in the industry. Supervised and unsupervised machine learning models are presented to demonstrate the path for automation. Precision above 95% in the real time automated workflows was achieved with a combination of physics and advanced machine learning models. The automation of the workflow has assisted with optimization of logging programs utilizing technology with costly lost in hole charges and high rate of tool failures in offshore operations. The optimization has reduced the requirement for logistics associated with logging and eliminated the need for radioactive sources and lithium batteries. Highest precision in logging prediction has been achieved through an automated workflow for real time operations. In addition, the workflow can also be deployed with robotics technology to automate sample collection, leading to increased efficiencies.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Sign in / Sign up

Export Citation Format

Share Document