Investigation of Hysteresis Loop in the Starting Process of Supersonic Cascade

AIAA Journal ◽  
2022 ◽  
pp. 1-9
Author(s):  
Shuying Zhang ◽  
Ling Zhou ◽  
Lucheng Ji
2019 ◽  
Vol 7 (36) ◽  
pp. 11085-11089
Author(s):  
Iwona Lazar ◽  
Monika Oboz ◽  
Jerzy Kubacki ◽  
Andrzej Majchrowski ◽  
Julita Piecha ◽  
...  

For the first time, a weak ferromagnetic hysteresis loop at room temperature has been observed in PbZr1−xTixO3 (PZT) single crystals.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1849
Author(s):  
Stelian Alaci ◽  
Constantin Filote ◽  
Florina-Carmen Ciornei ◽  
Oana Vasilica Grosu ◽  
Maria Simona Raboaca

The paper presents an analytical solution for the centric viscoelastic impact of two smooth balls. The contact period has two phases, compression and restitution, delimited by the moment corresponding to maximum deformation. The motion of the system is described by a nonlinear Hunt–Crossley equation that, when compared to the linear model, presents the advantage of a hysteresis loop closing in origin. There is only a single available equation obtained from the theorem of momentum. In order to solve the problem, in the literature, there are accepted different supplementary hypotheses based on energy considerations. In the present paper, the differential equation is written under a convenient form; it is shown that it can be integrated and a first integral is found—this being the main asset of the work. Then, all impact parameters can be calculated. The effect of coefficient of restitution upon all collision characteristics is emphasized, presenting importance for the compliant materials, in the domain of small coefficients of restitution. The results (variations of approach, velocity, force vs. time and hysteresis loop) are compared to two models due to Lankarani and Flores. For quasi-elastic collisions, the results are practically the same for the three models. For smaller values of the coefficient of restitution, the results of the present paper are in good agreement only to the Flores model. The simplified algorithm for the calculus of viscoelastic impact parameters is also presented. This algorithm avoids the large calculus volume required by solving the transcendental equations and definite integrals present in the mathematical model. The method proposed, based on the viscoelastic model given by Hunt and Crossley, can be extended to the elasto–visco–plastic nonlinear impact model.


2021 ◽  
Author(s):  
Wannida Chunarrom ◽  
Hathaikarn Manuspiya

The addition of a fluorinated chain improved the polarization in polyurethane, shifted the relaxation peaks, and changed the hysteresis loop behavior from a ferroelectric to a paraelectric phase.


1986 ◽  
Vol 59 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Robert A. Hayes

Abstract A two-solvent method for determining the polymer-solvent interaction parameters independently of stress-strain data is described. The values obtained are much lower than those reported previously. Network densities calculated from swelling data and these interaction parameters are in good agreement with those calculated from the return portion of a hysteresis loop at high elongations.


1996 ◽  
Vol 35 (Part 1, No. 7) ◽  
pp. 3882-3886 ◽  
Author(s):  
Masaru Nakamura ◽  
Tsukasa Hirayama ◽  
Yasuji Yamada ◽  
Yuichi Ikuhara ◽  
Yuh Shiohara

1989 ◽  
Vol 157 ◽  
Author(s):  
E. Johnson ◽  
L. Gråbaek ◽  
J. Bohr ◽  
A. Johansen ◽  
L. Sarholt-Kristensen ◽  
...  

ABSTRACTIon implantation at room temperature of lead into aluminium leads to spontaneous phase separation and formation of lead precipitates growing topotactically with the matrix. Unlike the highly pressurised (∼ 1–5 GPa) solid inclusions formed after noble gas implantations, the pressure in the lead precipitates is found to be less than 0.12 GPa.Recently we have observed the intriguing result that the lead inclusions in aluminium exhibit both superheating and supercooling [1]. In this paper we review and elaborate on these results. Small implantation-induced lead precipitates embedded in an aluminium matrix were studied by X-ray diffraction. The (111) Bragg peak originating from the lead crystals was followed during several temperature cycles, from room temperature to 678 K. The melting temperature for bulk lead is 601 K. In the first heating cycle we found a superheating of the lead precipitates of 67 K before melting occurred. During subsequent cooling a supercooling of 21 K below the solidification point of bulk lead was observed. In the subsequent heating cycles this hysteresis at the melting transition was reproducible. The full width of the hysteresis loop slowly decreased to 62 K, while the mean size of the inclusions gradually increased from 14.5 nm to 27 nm. The phenomena of superheating and supercooling are thus most pronounced for the small crystallites. The persistence of the hysteresis loop over successive heating cycles demonstrate that its cause is intrinsic in nature, and it is believed that the superheating originates from the lack of free surfaces of the lead inclusions.


The lack of reliable information on the absorption of moisture by hygroscopic textiles at high humidities has hitherto prevented the resolution of certain anomalies. In the present paper the conditions for the attainment of atmospheres of high humidity are discussed and new techniques are shown to be necessary. The main requirements are conditions favouring rapid transfer of moisture to the sample and adequate temperature control. A simple new apparatus is described together with the experimental methods employed. The results given show much higher sorption at very high humidities than has been previously reported, but there is no true equilibrium at saturation. The immediate saturation regain is, for practical purposes, identical with the moisture held by the fibres after centrifuging wet samples under standard conditions. It is concluded that the hysteresis loop closes at saturation. Other related phenomena are discussed.


Sign in / Sign up

Export Citation Format

Share Document