Development of a Low-Cost and Versatile Flight Test Platform

1997 ◽  
Vol 34 (1) ◽  
pp. 9-19 ◽  
Author(s):  
L. M. B. C. Campos ◽  
A. A. Fonseca ◽  
J. R. C. Azinheira ◽  
J. P. Loura
Keyword(s):  
Low Cost ◽  
2015 ◽  
Vol 1115 ◽  
pp. 450-453 ◽  
Author(s):  
Moumen Idres ◽  
Burhani Makame ◽  
Bala Nabil Ahmad ◽  
Saleh Naji ◽  
Ahmad Safiuddin

Unmanned Aerial Vehicle (UAV) is becoming increasingly popular because it can perform variety of functions. These functions include surveillance, reconnaissance, monitoring, data collection and rescue operation. The purpose of this work is to design, fabricate and fly a low weight, low cost, small size UAV for a surveillance mission. The design is carried out based on Advanced Aircraft Analysis (AAA) software. The design process starts with the design specifications for a typical surveillance mission. Aircraft weight, wing loading and power loading were estimated in performance sizing process. Geometry was estimated using preliminary sizing. Aerodynamics of the aircraft was determined, which enabled the performance and stability to be analysed. If the desired performance is not achieved, the sizing is readjusted until a final design is reached. The aircraft was manufactured using foam, carbon rods, and fibreglass. The aircraft successfully flew at the first trial flight. This was followed by a successful flight with aerial photography. Keywords: UAV, design process, fabrication process, composite structure, flight test


Author(s):  
Juan Jorge Quiroga ◽  
Jorge Lassig ◽  
Darío Mendieta

Nowadays, it is possible to achieve low cost and short production times space missions using satellites with a mass below 10 kg. These small satellites are described as nanosatellites. Current microelectronic technology makes it possible to develop nanosatellites for scientific experiments and relatively complex measurements (as well as for other applications), making it easy for universities and small research groups to have access to space science exploration and to exploit the new economic possibilities that emerge. This paper describes an experiment developed in Argentina at the Universidad Nacional del Comahue to design, construct and flight test a nanosatellite called Pehuensat-1. Finally is presented to Pehuensat-2 as future commercial nano-satellite.


Author(s):  
Brian A. Kish ◽  
Matthew Rhoney ◽  
Ralph D. Kimberlin ◽  
Katarina Vuckovic ◽  
Erfan Attarian

2018 ◽  
Vol 159 ◽  
pp. 02045
Author(s):  
Mochammad Ariyanto ◽  
Joga D. Setiawan ◽  
Teguh Prabowo ◽  
Ismoyo Haryanto ◽  
Munadi

This research will try to design a low cost of fixed-wing unmanned aerial vehicle (UAV) using low-cost material that able to fly autonomously. Six parameters of UAV’s structure will be optimized based on basic airframe configuration, wing configuration, straight wing, tail configuration, fuselage material, and propeller location. The resulted and manufactured prototype of fixed-wing UAV will be tested in autonomous fight tests. Based on the flight test, the developed UAV can successfully fly autonomously following the trajectory command. The result shows that low-cost material can be used as a body part of fixed-wing UAV.


2018 ◽  
Vol 233 ◽  
pp. 00001
Author(s):  
Dominique Paul Bergmann ◽  
Jan Denzel ◽  
Andreas Strohmayer

Today new technologies are available, which can be decisive for the success of future aircraft design. However, the gap between conventional designs and new visions often comes with a high financial risk. This complicates the integration of innovations significantly. The “Flightpath 2050 Europe’s Vision for Aviation” asks for new aircraft concepts and configurations to meet future requirements such as emission (CO2, NOx), noise and fuel consumption reduction. Scaled UAS are one way for getting new configurations and technologies into flight test while reducing the risk of exploding costs. UAS are cost-efficient test platform systems for two main tasks of future aircraft tests: Testing new configurations and advancing new aircraft systems and technologies from upstream research to TRL5-6. UAS can represent a connection between innovative research and flight demonstration. This paper focuses on the UAS as an innovative test platform and a tool for feasibility demonstration as well as its impact on new technologies and the implementation of innovative concepts. An example of a UAS test platform is given in the paper based on a 33,3% scale model of the e-Genius. It is developed as flying wind tunnel in order to better understand the effects of configuration changes on flight performance.


2016 ◽  
Vol 28 (4) ◽  
pp. 449-462 ◽  
Author(s):  
Shuaitong Liang ◽  
Xue Mei Ding ◽  
Xiong Ying Wu ◽  
Fan Wu ◽  
Tesfaye Mulu Asmamaw

Purpose – Smooth appearance of fabrics after ironing with steam, soleplate, ironing speed and their interactions cannot be studied using household ironing machines such as hang steamer and flatiron. The purpose of this paper is to present the design and verification of a simple, low-cost test platform based on the fabric materials hang-ironing factors includes temperature, humidity, ironing speed (time). Design/methodology/approach – This platform achieves adjustable and stable steam flow rate, enabling any ironing speed and any temperature of soleplate below 200°C. Moreover, the whole ironing process is automatically after experiment level set ahead for better observation to the ironing process. Findings – Regression results of the apparatus are stable, statistical significant which is verified by the statistics under design of experiment. Originality/value – It is useful in other aspects such as nozzle test and improvement, new products evaluation and smooth appearance level experiment and test for new ironing product and its research. It is also useful in other aspects such as nozzle test and improvement, new products evaluation and smooth appearance level experiment and test for new ironing product and its research.


Author(s):  
Calvin Coopmans ◽  
Long Di ◽  
Austin Jensen ◽  
Aaron A. Dennis ◽  
YangQuan Chen

Remote sensing is a field traditionally dominated by expensive, large-scale operations. This paper presents our efforts to improve our unmanned aircraft (UA) platforms for low-cost personal remote sensing purposes. Safety concerns are first emphasized regarding the local airspace and multiple fail-safe features are shown in the current system. Then the AggieAir unmanned system architecture is briefly described including the Paparazzi UA autopilot, AggieAir JAUS implementation, AggieNav navigation unit and payload integration. Some preliminary flight test results and images acquired using an example thermal IR payload system are also shown. Finally Multi-UAV and heterogeneous platform capabilities are discussed with respect to their applications. Based on our approaches on the new architecture design, personal remote sensing on smaller-scale operations can be more beneficial and common.


2020 ◽  
Author(s):  
Lyle Jones

The electrical Testing and Characterization of the devices built under research conditions on silicon wafers, diced wafers, or package parts have hampered research since the beginning of integrated circuits. The challenges of performing electrical characterization on devices are to acquire useful and accurate data, the ease of use of the test platform, the portability of the test equipment, the ability to automate quickly, to allow modifications to the platform, the ability to change the configuration of the Device Under Test (DUT) or the Memristor Based Design (MBD), and to do this within budget. The devices that this research is focused on are memristors with unique test challenges. Some of the tests performed on memristors are Voltage sweeps, pulsing of Voltages, and threshold Voltages. Standard methods of testing memristors usually require hands-on experience, multiple bulky work stations, and hours of training. This work reports a novel, low-cost, portable test and characterization platform for many types of memristors with a voltage range from -10V to +10V, which is portable, low-cost, built with off-the-shelf components, and with configurability through software and hardware. To demonstrate the performance of the platform, the platform was able to take a virgin memristor from “forming” to operation voltages, and then incrementally change resistances by Voltage Pulsing. The platform within this work allows the researcher flexibility in electrical characterization by being able to accept many memristor types and MBDs, and applying environmental conditions to the MBD, with this flexibility of the platform the productivity of the researcher will increase.


Sign in / Sign up

Export Citation Format

Share Document