Experimental and numerical study of supersonic film cooling

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 915-923 ◽  
Author(s):  
B. Aupoix ◽  
A. Mignosi ◽  
S. Viala ◽  
F. Bouvier ◽  
R. Gaillard
Keyword(s):  
Author(s):  
Yaping Hu ◽  
Honghu Ji

The paper numerically investigates the influences of the blowing angle α of coolant flow on the cooling effectiveness of effusion cooling of a plate. Nine cases were studied which cover three blowing angles of α = 30°, 60°, 90° and for each angle three blowing ratios of M = 0.5, 1.0, 2.0 are calculated, respectively. The results show that with the increase of α the cooling effectiveness reduces for all the calculated cases. For the cases of α = 30° and 60° the distribution of cooling effectiveness η along the whole plate are very similar for any given blowing ratio, especially when M = 1.0 and 2.0. Whereas for the cases of α = 90°, the distributions of cooling effectiveness are quite different from other two blowing angles for a given blowing ratio, especially for M = 1.0 and in the trailing region of the plate. Although the cooling effectiveness of the cases with α = 90° for any given blowing ratio is the worst one among the three angles (α = 30°, 60°, and 90°) stated, its absolute value is still quite high comparing to the conventional film cooling.


Author(s):  
Bingran Li ◽  
Cunliang Liu ◽  
Lin Ye ◽  
Huiren Zhu ◽  
Fan Zhang

Abstract To investigate the application of ribbed cross-flow coolant channels with film hole effusion and the effects of the internal cooling configuration on film cooling, experimental and numerical studies are conducted on the effect of the relative position of the film holes and different orientation ribs on the film cooling performance. Three cases of the relative position of the film holes and different orientation ribs (post-rib, centered, and pre-rib) in two ribbed cross-flow channels (135° and 45° orientation ribs) are investigated. The film cooling performances are measured under three blowing ratios by the transient liquid crystal measurement technique. A RANS simulation with the realizable k-ε turbulence model and enhanced wall treatment is performed. The results show that the cooling effectiveness and the downstream heat transfer coefficient for the 135° rib are basically the same in the three position cases, and the differences between the local effectiveness average values for the three are no more than 0.04. The differences between the heat transfer coefficients are no more than 0.1. The “pre-rib” and “centered” cases are studied for the 45° rib, and the position of the structures has little effect on the film cooling performance. In the different position cases, the outlet velocity distribution of the film holes, the jet pattern and the discharge coefficient are consistent with the variation in the cross flow. The related research previously published by the authors showed that the inclination of the ribs with respect to the holes affects the film cooling performance. This study reveals that the relative positions of the ribs and holes have little effect on the film cooling performance. This paper expands and improves the study of the effect of the internal cooling configuration on film cooling and makes a significant contribution to the design and industrial application of the internal cooling channel of a turbine blade.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Fu-qiang Wang ◽  
Jian Pu ◽  
Jian-hua Wang ◽  
Wei-dong Xia

Abstract Film-hole can be often blocked by thermal-barrier coatings (TBCs) spraying, resulting in the variations of aerodynamic and thermal performances of film cooling. In this study, a numerical study of the blockage effect on the film cooling effectiveness of inclined cylindrical-holes was carried out on a concave surface to simulate the airfoil pressure side. Three typical blowing ratios (BRs) of 0.5, 1.0, and 1.5 were chosen at an engine-similar density ratio (DR) of 2.0. Two common inclination angles of 30 deg and 45 deg were designed. The blockage ratios were adjusted from 0 to 20%. The results indicated the blockage could enhance the penetration of film cooling flow to the mainstream. Thus, the averaged effectiveness and coolant coverage area were reduced. Moreover, the pressure loss inside of the hole was increased. With the increase of BR, the decrement of film cooling effectiveness caused by blockage rapidly increased. At BR = 1.5, the decrement could be acquired up to 70% for a blockage ratio of 20%. The decrement of film cooling effectiveness caused by blockage was nearly nonsensitive to the injection angle; however, the larger angle could generate the higher increment of pressure loss caused by blockage. A new design method for the couple scheme of film cooling and TBC was proposed, i.e., increasing the inlet diameter according to the blockage ratio before TBC spraying. In comparison with the original unblocked-hole, the enlarged blocked-hole not only kept the nearly same area-averaged effectiveness but also reduced slightly the pressure loss inside of the hole. Unfortunately, application of enlarged blocked-hole at large BR could lead to a more obvious reduction of effectiveness near hole-exit, in comparison with the original common-hole.


Author(s):  
Timothy W. Repko ◽  
Andrew C. Nix ◽  
James D. Heidmann

An advanced, high-effectiveness film-cooling design, the anti-vortex hole (AVH) has been investigated by several research groups and shown to mitigate or counter the vorticity generated by conventional holes and increase film effectiveness at high blowing ratios and low freestream turbulence levels. [1, 2] The effects of increased turbulence on the AVH geometry were previously investigated and presented by researchers at West Virginia University (WVU), in collaboration with NASA, in a preliminary CFD study [3] on the film effectiveness and net heat flux reduction (NHFR) at high blowing ratio and elevated freestream turbulence levels for the adjacent AVH. The current paper presents the results of an extended numerical parametric study, which attempts to separate the effects of turbulence intensity and length-scale on film cooling effectiveness of the AVH. In the extended study, higher freestream turbulence intensity and larger scale cases were investigated with turbulence intensities of 5, 10 and 20% and length scales based on cooling hole diameter of Λx/dm = 1, 3 and 6. Increasing turbulence intensity was shown to increase the centerline, span-averaged and area-averaged adiabatic film cooling effectiveness. Larger turbulent length scales were shown to have little to no effect on the centerline, span-averaged and area-averaged adiabatic film-cooling effectiveness at lower turbulence levels, but slightly increased effect at the highest turbulence levels investigated.


Author(s):  
Lv Ye ◽  
Zhao Liu ◽  
Xiangyu Wang ◽  
Zhenping Feng

This paper presents a numerical simulation of composite cooling on a first stage vane of a gas turbine, in which gas by fixed composition mixture is adopted. To investigate the flow and heat transfer characteristics, two internal chambers which contain multiple arrays of impingement holes are arranged in the vane, several arrays of pin-fins are arranged in the trailing edge region, and a few arrays of film cooling holes are arranged on the vane surfaces to form the cooling film. The coolant enters through the shroud inlet, and then divided into two parts. One part is transferred into the chamber in the leading edge region, and then after impinging on the target surfaces, it proceeds further to go through the film cooling holes distributed on the vane surface, while the other part enters into the second chamber immediately and then exits to the mainstream in two ways to effectively cool the other sections of the vane. In this study, five different coolant flow rates and six different inlet pressure ratios were investigated. All the cases were performed with the same domain grids and same boundary conditions. It can be concluded that for the internal surfaces, the heat transfer coefficient changes gradually with the coolant flow rate and the inlet total pressure ratio, while for the external surfaces, the average cooling effectiveness increases with the increase of coolant mass flow rates while decreases with the increase of the inlet stagnation pressure ratios within the study range.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical study on the effects of sister holes locations on film cooling performance is presented. This includes the change of the location of the individual discrete sister holes in the streamwise and spanwise directions, where each one of these directions includes 9 different locations, The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The variation of the sister holes in the streamwise direction provides similar film cooling performance as the base case for both blowing ratios of 0.5 and 1. On the other hand, the spanwise variation of the sister holes’ location has a more prominent effect on the effectiveness. In some cases, as a result of the anti-vortices generated from the sister holes and the repositioning of the sister holes in the spanwise direction, the jet lift-off effect notably decreases and more volume of coolant is distributed in the spanwise direction.


Author(s):  
Mukesh Prakash Mishra ◽  
A K Sahani ◽  
Sunil Chandel ◽  
R K Mishra

Abstract In the present work numerical study of full coverage film cooling on an adiabatic flat plate is carried out. Cooling performance of three configurations of cylindrical holes is studied with downstream injection, upstream injection and mixed injection. In mixed injection configuration one column of holes inject in downstream direction and the holes in the adjacent column inject in the upstream direction. Numerical simulations are carried out at different velocity ratios and circumferentially averaged value of adiabatic film cooling effectiveness is estimated. Simulation results indicate that the mixed injection configuration has better and more uniform cooling, throughout the perforated plate, than with downstream injection. The difference is greater with increase in the velocity ratio. Configuration with upstream injection gives better cooling than mixed injection at front few rows of cooling holes but it shows poorer performance with downstream injection in the downstream rows of cooling holes. The obtained results from this study can be an invaluable input for highly loaded combustion chambers.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Qihe Huang ◽  
Jiao Wang ◽  
Lei He ◽  
Qiang Xu

A numerical study is performed to simulate the tip leakage flow and heat transfer on the first stage rotor blade tip of GE-E3 turbine, which represents a modern gas turbine blade geometry. Calculations consist of the flat blade tip without and with film cooling. For the flat tip without film cooling case, in order to investigate the effect of tip gap clearance on the leakage flow and heat transfer on the blade tip, three different tip gap clearances of 1.0%, 1.5% and 2.5% of the blade span are considered. And to assess the performance of the turbulence models in correctly predicting the blade tip heat transfer, the simulations have been performed by using four different models (the standard k-ε, the RNG k-ε, the standard k-ω and the SST models), and the comparison shows that the standard k-ω model provides the best results. All the calculations of the flat tip without film cooling have been compared and validated with the experimental data of Azad[1] and the predictions of Yang[2]. For the flat tip with film cooling case, three different blowing ratio (M = 0.5, 1.0, and 1.5) have been studied to the influence on the leakage flow in tip gap and the cooling effectiveness on the blade tip. Tip film cooling can largely reduce the overall heat transfer on the tip. And the blowing ratio M = 1.0, the cooling effect for the blade tip is the best.


Sign in / Sign up

Export Citation Format

Share Document