Optimization techniques in the structural design process

Author(s):  
W. DWYER ◽  
T. BALDERES ◽  
R. EMERTON
Author(s):  
Robert M. Koch

Abstract The present work describes an integrated, two-phase computer-based method for fabricating marine propulsors using stereolithography. This new methodology seamlessly integrates stereolithography rapid prototyping techniques with the hydrodynamic design, structural design, and prototype testing of advanced marine propulsors in order to greatly increase the design process efficiency and reduce development time. Its use as applied to the design, fabrication, and testing of advanced propulsor prototypes for small weapon’s-scale undersea vehicles (e.g., Unmanned Underwater Vehicles (UUVs), lightweight and heavyweight torpedoes, etc.) is described in order to demonstrate specific strengths of the new method.


2011 ◽  
Vol 267 ◽  
pp. 297-301
Author(s):  
Yong Wang ◽  
Guo Niu Zhu ◽  
Bo Yu Sun

The paper is concerned with topology optimization in the mechanical design process. The disadvantage of current process of mechanical design is discussed and a new design process based on structural topology optimization is presented. The design process with structural topology optimization in mechanical design is discussed by the example of the frame of a bender. Static analysis is made to the original model first according to the whole structure and working characteristic of the machine, the stress and deformation distribution are obtained and then topology optimization is carried out. On the basis of topology optimization, the layout of the initial design proposal is obtained and the weight of the frame is substantially reduced while the performance enhanced. The application of the method demonstrates that through innovative utilization of the topology optimization techniques, the conceptual proposals can be obtained and the overall mechanical design process can be improved substantially in a cost effective manner.


Author(s):  
Mohammed Waheed ◽  
◽  
Mahmad Naheed ◽  
Parvez Patel ◽  
Syed Mubashir Hussain ◽  
...  

In this works 3D modeling, design and safety management of high rise building using building information modeling (BIM) technology is carried out.. Initially a AutoCAD plan with all its salient features is developed following byelaws of high rise building. Then the 3D modeling and rendering of high rise building is done in the Revit architecture of the 2D plan which is imported from the AutoCAD. The analysis and design of high rise building is carried out using ETabs software. Apart from the structural design Mechanical, Electrical and Plumbing (MEP) services design is carried out using BIM technology . The layout of fire safety system is specified efficiently with use of BIM in co-ordination with MEP services. The application of BIM based design process resulted in considerable time reduction in compression with traditional design process and the holistic design of the high rise building is carried out with the compatibility of different softwares.


2014 ◽  
Vol 889-890 ◽  
pp. 380-384
Author(s):  
Zhi Liu ◽  
Peng Fang ◽  
Di Wu ◽  
Dong Li

This article describes the design process of pumping stations of crawler full hydraulic drilling rig. The principle of full hydraulic drilling rig pumping station,scheme selection, hydraulic components selection and structural design of the tank were presented. The system used double loops in which some advanced hydraulic components and control technique were adopt.


Author(s):  
Abdelkader Benaouali ◽  
Robert Rogólski ◽  
Stanisław Kachel

The design process is no longer a trial-and-error procedure due to the introduction of computer-aided tools and optimization techniques. The product development process is therefore accelerated, allowing to produce more in a relatively lesser time. Moreover, the best possible design, with regard to the performance, can hence be obtained. When applied to the design of an aircraft wing, the optimization objective is usually to minimize the structural weight under failure-based constraints. This paper presents an optimization strategy that allows the determination of the wing surface structural thicknesses corresponding to the minimal weight while keeping the structure safe in terms of strength and buckling. This strategy is applied for the wing sizing process of a new two-seater very light aircraft, currently under development. The design process goes through geometric modeling, aerodynamic calculations using vortex lattice method, and finite element modeling. Structural optimization is performed within MATLAB, and is based on the automatic execution of the finite element solver MSC.NASTRAN.


2007 ◽  
Vol 23 (03) ◽  
pp. 135-141
Author(s):  
Michael Zimmermann ◽  
Robert Bronsart

The design process in the maritime industry is characterized by a close cooperation of many diverse partners working in parallel. In this phase, standardization is used to reduce costs, to improve quality, and to shorten time to market. In this paper, an electronic system for the definition, management, and application of standardized solutions for steel structural design is presented. Information about the approach to data modeling applied and the interaction with existing applications is given.


2021 ◽  
Vol 63 (2) ◽  
pp. 157-162
Author(s):  
Ali Rıza Yıldız ◽  
Mehmet Umut Erdaş

Abstract In this paper, a new hybrid Taguchi salp swarm algorithm (HTSSA) has been developed to speed up the optimization processes of structural design problems in industry and to approach a global optimum solution. The design problem is posed for the shape optimization of a seat bracket with a mass objective function and a stress constraint. Objective function evaluations are based on finite element analysis, while the response surface method is used to obtain the equations necessary for objective and constraint functions. Recent optimization techniques such as the salp swarm algorithm, grasshopper optimization algorithm and, Harris hawks optimization algorithm are used to compare the performance of the HTSSA in solving the structural design problem. The results show the hybrid Taguchi salp swarm algorithm’s ability and the superiority of the method developed for optimum product design processes.


Author(s):  
Qian Wang ◽  
Lucas Schmotzer ◽  
Yongwook Kim

<p>Structural designs of complex buildings and infrastructures have long been based on engineering experience and a trial-and-error approach. The structural performance is checked each time when a design is determined. An alternative strategy based on numerical optimization techniques can provide engineers an effective and efficient design approach. To achieve an optimal design, a finite element (FE) program is employed to calculate structural responses including forces and deformations. A gradient-based or gradient-free optimization method can be integrated with the FE program to guide the design iterations, until certain convergence criteria are met. Due to the iterative nature of the numerical optimization, a user programming is required to repeatedly access and modify input data and to collect output data of the FE program. In this study, an approximation method was developed so that the structural responses could be expressed as approximate functions, and that the accuracy of the functions could be adaptively improved. In the method, the FE program was not required to be directly looped in the optimization iterations. As a practical illustrative example, a 3D reinforced concrete building structure was optimized. The proposed method worked very well and optimal designs were found to reduce the torsional responses of the building.</p>


Sign in / Sign up

Export Citation Format

Share Document