Fast Simulation Techniques for Switching Converters

Author(s):  
Roger J. King
2002 ◽  
Vol 16 (2) ◽  
pp. 205-232 ◽  
Author(s):  
Nam Kyoo Boots ◽  
Michel Mandjes

We consider a queue fed by a large number, say n, on–off sources with generally distributed on- and off-times. The queueing resources are scaled by n: The buffer is B ≡ nb and the link rate is C ≡ nc. The model is versatile. It allows one to model both long-range-dependent traffic (by using heavy-tailed on-periods) and short-range-dependent traffic (by using light-tailed on-periods). A crucial performance metric in this model is the steady state buffer overflow probability.This probability decays exponentially in n. Therefore, if n grows large, naive simulation is too time-consuming and fast simulation techniques have to be used. Due to the exponential decay (in n), importance sampling with an exponential change of measure goes through, irrespective of the on-times being heavy or light tailed. An asymptotically optimal change of measure is found by using large deviations arguments. Notably, the change of measure is not constant during the simulation run, which is different from many other studies (usually relying on large buffer asymptotics).Numerical examples show that our procedure improves considerably over naive simulation. We present accelerations, we discuss the influence of the shape of the distributions on the overflow probability, and we describe the limitations of our technique.


2020 ◽  
Vol 245 ◽  
pp. 02026
Author(s):  
Fedor Ratnikov

LHCb is one of the major experiments operating at the Large Hadron Collider at CERN. The richness of the physics program and the increasing precision of the measurements in LHCb lead to the need of ever larger simulated samples. This need will increase further when the upgraded LHCb detector will start collecting data in the LHC Run 3. Given the computing resources pledged for the production of Monte Carlo simulated events in the next years, the use of fast simulation techniques will be mandatory to cope with the expected dataset size. Generative models, which are nowadays widely used for computer vision and image processing, are being investigated in LHCb to accelerate generation of showers in the calorimeter and high-level responses of Cherenkov detector. We demonstrate that this approach provides high-fidelity results and discuss possible implications of these results. We also present an implementation of this algorithm into LHCb simulation software and validation tests.


Author(s):  
D.J. Benefiel ◽  
R.S. Weinstein

Intramembrane particles (IMP or MAP) are components of most biomembranes. They are visualized by freeze-fracture electron microscopy, and they probably represent replicas of integral membrane proteins. The presence of MAP in biomembranes has been extensively investigated but their detailed ultrastructure has been largely ignored. In this study, we have attempted to lay groundwork for a systematic evaluation of MAP ultrastructure. Using mathematical modeling methods, we have simulated the electron optical appearances of idealized globular proteins as they might be expected to appear in replicas under defined conditions. By comparing these images with the apearances of MAPs in replicas, we have attempted to evaluate dimensional and shape distortions that may be introduced by the freeze-fracture technique and further to deduce the actual shapes of integral membrane proteins from their freezefracture images.


Author(s):  
M.J. Kim ◽  
Y.L. Chen ◽  
R.W. Carpenter ◽  
J.C. Barry ◽  
G.H. Schwuttke

The structure of grain boundaries (GBs) in metals, semiconductors and ceramics is of considerable interest because of their influence on physical properties. Progress in understanding the structure of grain boundaries at the atomic level has been made by high resolution electron microscopy (HREM) . In the present study, a Σ=13, (510) <001>-tilt grain boundary in silicon was characterized by HREM in conjunction with digital image processing and computer image simulation techniques.The bicrystals were grown from the melt by the Czochralski method, using preoriented seeds. Specimens for TEM observations were cut from the bicrystals perpendicular to the common rotation axis of pure tilt grain boundary, and were mechanically dimpled and then ion-milled to electron transparency. The degree of misorientation between the common <001> axis of the bicrystal was measured by CBED in a Philips EM 400ST/FEG: it was found to be less than 1 mrad. HREM was performed at 200 kV in an ISI-002B and at 400 kv in a JEM-4000EX.


Sign in / Sign up

Export Citation Format

Share Document