Stall inception in a multi-stage high speed axial compressor

Author(s):  
DONALD HOYING
1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
David Arnaud ◽  
Xavier Ottavy ◽  
Andre´ Vouillarmet

This paper relates to laser anemometry measurements (LDA) conducted in a high speed, three-stage, axial compressor. Particular attention has been paid to the estimation of the measurement accuracy. Three different synchronization procedures have been implemented in order to enhance the exactness of the location in the rotating frame for each situation. Small flat windows mainly provide the optical accesses. But, large curved glasses could also be used, the optical distortions resulting from the surface curvature being corrected with the help of an optical assembly developed for the L2F technique and extended to the LDA technique. Furthermore, in order to avoid interpolation processes when changing the frame of reference, the spatial and time discretizations have been defined in accordance with the numbers of rotor and stator blades. The presented measurements have been performed, at 50% blade height, in the first three inter row sections, the azimuthal exploration covering machine periodicity.


Author(s):  
L. G. N. Bennett ◽  
W. D. E. Allan

Rotating stall is an internal aerodynamic disturbance that limits the performance and operating life of a compressor. It has been studied with the aim of developing techniques for its prediction and prevention. To further the understanding of rotating stall inception, a test rig was constructed with the axial stages of a Rolls Royce Model 250-C20B small, high speed axial compressor as the test article. A gasoline engine was used to power the compressor and airflow was throttled through a pneumatically controlled valve. Simultaneous static pressure measurements were taken with seven high speed transducers arranged in two configurations: distributed both axially and circumferentially around the compressor casing. The compressor characteristic was mapped and detailed pressure measurements were taken between normal and surge operating conditions. Previous studies of high speed multi-stage compressors have shown both modal and spike type stall inception at different compressor stages. Other examinations of the Model 250 compressor have shown stall inception occurring at the first stage of the compressor. Similar results were observed in this study and an analysis was conducted using a variety of signal processing techniques including pressure trace inspection and discrete spatial Fourier decomposition.


Author(s):  
David Arnaud ◽  
Xavier Ottavy ◽  
Andre´ Vouillarmet

The second part of this paper deals with the analysis of the 2D LDA measurements carried out within the high-speed multistage axial compressor CREATE. First the interactions correlations are quantified using the deterministic stresses introduced by Adamczyk. Secondly, a modal decomposition shows that the interactions are characterized by the presence of spatial harmonics (spinning lobes) given by a linear combination of the blades numbers. An original measurement of the rotating speed of the spinning lobes has been carried out allowing to identify almost all the spinning lobes in the first inter row region resulting from the R1-S1 interactions. For the first stage, where the influence of the downstream rows is low, the measured flow field is well reproduced by the model of Tyler and Sofrin. Spatial DFT of the flow field calculated for each time of the compressor time period show that there is a pulsation of the spatial harmonics with the period associated to the minimum elapsed time to recover the same relative positions of the rotor and stator rows.


Author(s):  
J. F. Escuret ◽  
V. Garnier

This paper presents unsteady measurements taken in a high-speed four-stage aero-engine compressor prior to the onset of aerodynamic flow instabilities. In this experiment, forty fast-response pressure transducers have been located at various axial and circumferential positions throughout the machine in order to give a very detailed picture of stall inception. At all the compressor speeds investigated, the stall pattern observed is initiated by a very short length-scale finite-amplitude disturbance which propagates at a fast rate around the annulus. This initial stall cell leads to a large-amplitude system instability in less than five rotor revolutions. Varying the IGV setting angle is found to have a strong influence on the axial location of the first disturbance detected. In particular, transferring the aerodynamic loading from front to downstream stages moves the first disturbance detected from the first to the last stage of the compressor. Other repeatable features of the stall inception pattern in this compressor have been identified using a simple analysis technique particularly appropriate to the study of short length-scale disturbances. It is found that the origins of instabilities are tied to particular tangential positions in both the stationary and rotating frames of reference. These measurements lead to the conclusion that the stall inception process in high-speed multi-stage compressors can be characterised by some very local and organised flow phenomena. Moreover, there is no evidence of pre-stall waves in this compressor.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
O. G. McGee ◽  
K. L. Coleman

General methodologies are proposed in this two-part paper that further phenomenological understanding of compressible stall inception and aeromechanical control of high-speed axial compressors and engine performance. Developed in Part I are strategies for passive stabilization of compressible rotating stall, using tailored structural design and aeromechanical feedback control, implemented in certain classes of high-speed axial compressors used in research laboratories and by industry. Fundamentals of the stability of various dynamically-compensated, high-speed compressors was set down from linearized, compressible structural-hydrodynamic equations of modal stall inception extended further in this study from previous work. A dimensionless framework for performance-based design of aeromechanically-controlled compression system stall mitigation and engine performance is established, linking specified design flow and work-transfer (pressure) operability to model stages or local blade components, velocity triangle environment, optimum efficiency, extended stall margin and operability loci, and aeromechanical detailed design. A systematic evaluation was made in Part II (Coleman and McGee, 2013, “Aeromechanical Control of High-Speed Axial Compressor Stall and Engine Performance—Part II: Assessments of Methodology,” ASME J. Fluids Eng. (to be published)) on the performance of ten aeromechanical feedback controller schemes to increase the predicted range of stable operation of two laboratory compressor characteristics assumed, using static pressure sensing and local structural actuation to rudimentary postpone high-speed modal stall inception. The maximum flow operating range for each of the ten dynamically-compensated, high-speed compression systems was determined using optimized or “tailored” structural controllers, and the results described in Part II of the companion paper are compared to maximum operating ranges achieved in corresponding low-speed compression systems.


Author(s):  
Joshua D. Cameron ◽  
Scott C. Morris

Investigations of stall inception and compressor pre-stall behavior have used a variety of techniques to make inferences about the mechanisms of rotating stall inception. Many of these techniques utilized data from arrays of circumferentially spaced hot-wires or high frequency response pressure transducers. This paper presents results from the application of several typical analysis techniques to the interpretation of unsteady casing pressure measurements recorded during two representative stall event in a high-speed axial compressor stage. Results from visual pressure trace inspection, spatial Fourier decomposition, wavelet filtering, and traveling wave energy techniques are presented and compared. The effects of measurement and analysis parameters are also briefly discussed. A new analysis technique based on windowed two-point spatial correlation between adjacent stall inception sensors is described. The method was found to provide both spatial and temporal information about rotating features in the compressor flow and is insensitive to low pass filtering and parameter selection over a wide range of values. It was also found to be valuable for analysis of both pre-stall and stall inception behavior.


Sign in / Sign up

Export Citation Format

Share Document