Variations in flow field physics caused by algebraic turbulence model modifications for a supersonic 2-D open cavity

Author(s):  
Chung-Jen Tam ◽  
Paul Orkwis ◽  
Peter Disimile ◽  
Chung-Jen Tam ◽  
Paul Orkwis ◽  
...  
2014 ◽  
Vol 18 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Momir Sjeric ◽  
Darko Kozarac ◽  
Rudolf Tomic

The development of a two zone k-? turbulence model for the cycle-simulation software is presented. The in-cylinder turbulent flow field of internal combustion engines plays the most important role in the combustion process. Turbulence has a strong influence on the combustion process because the convective deformation of the flame front as well as the additional transfer of the momentum, heat and mass can occur. The development and use of numerical simulation models are prompted by the high experimental costs, lack of measurement equipment and increase in computer power. In the cycle-simulation codes, multi zone models are often used for rapid and robust evaluation of key engine parameters. The extension of the single zone turbulence model to the two zone model is presented and described. Turbulence analysis was focused only on the high pressure cycle according to the assumption of the homogeneous and isotropic turbulent flow field. Specific modifications of differential equation derivatives were made in both cases (single and two zone). Validation was performed on two engine geometries for different engine speeds and loads. Results of the cyclesimulation model for the turbulent kinetic energy and the combustion progress variable are compared with the results of 3D-CFD simulations. Very good agreement between the turbulent kinetic energy during the high pressure cycle and the combustion progress variable was obtained. The two zone k-? turbulence model showed a further progress in terms of prediction of the combustion process by using only the turbulent quantities of the unburned zone.


Author(s):  
Hao Chang ◽  
Weidong Shi ◽  
Wei Li ◽  
Jianrui Liu ◽  
Ling Zhou ◽  
...  

In order to study the influence rule of wrap angle of blade on the internal flow field and hydraulic performance of double suction pump, 5 kinds of wrap angles of blade with 100°, 110°, 120°, 130° and 140° are designed in this paper. The turbulence model and the grid type are analyzed, the performance of ES350-575 double suction pump is obtained by employ the software CFX. The static pressure and velocity distributions in the cross-section are analyzed. Therefore, the optimal model is obtained, and the relevant external characteristic test is conducted. The result shows that the reasonable increase of the wrap angle of blade can enhance the performance of the pump effectively, which can improve the static pressure and velocity distributions of the internal flow field.


2013 ◽  
Vol 45 ◽  
pp. 01013
Author(s):  
V. Běták ◽  
P. Sváček ◽  
J. Novotný ◽  
J. Fürst ◽  
J. Fořt
Keyword(s):  

2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


Author(s):  
Ning Mei ◽  
Xiaoyan Wang ◽  
Hongming Zhao ◽  
Yan Li ◽  
Hongyu Si

Fluid flow contributes much to fuel-air mixture formation in a micro-combustor, the RNG k-ε turbulence model was used to simulate the cold flow field of a falling fuel film microcombustor, and comparison was made between numerical result and experimental results. It is shown that the RNG k-ε turbulence model translated the flow field of a complex structure micro-combustor and the soot accumulation on the wall of combustion chamber. The experimental results showed that soot accumulation occurs in vortex backflow area near the wall of combustion chamber and the numerical methods is helpful for understanding the way of soot accumulation in the wall of combustion chamber. Therefore, modifications on the flow field with different diameters and entrance direction of the air flow into the primary combustion chamber were made. The numerical simulation of flow distribution showed that the flow field of micro-combustor could be ideal for eliminated soot accumulation.


2013 ◽  
Vol 17 (5) ◽  
pp. 1504-1507 ◽  
Author(s):  
Zhi-Fei Li ◽  
Zheng Du ◽  
Kai Zhang ◽  
Dong-Sheng Li ◽  
Zhong-Di Su ◽  
...  

Three-dimensional computational model for a gas turbine flowmeter is proposed, and the finite volume based SIMPLEC method and k-? turbulence model are used to obtain the detailed information of flow field in turbine flowmeter, such as velocity and pressure distribution. Comparison between numerical results and experimental data reveals a good agreement. A rectifier with little pressure loss is optimally designed and validated numerically and experimentally.


2014 ◽  
Vol 1025-1026 ◽  
pp. 148-155
Author(s):  
Cheng Xiang Zhu ◽  
Chun Ling Zhu ◽  
Bin Fu

Ice accretion on 3D complex configuration is studied by numerical methods. The flow field is obtained by using Fluent 6.0 with a S-A turbulence model. Droplet trajectories and impingement characteristics are obtained by using the Eulerian approach. Ice shape is calculated based on the improved Messinger model with a new runback distribution scheme. By applying the method presented in this paper, ice accretion on NACA0012 is computed and the results are in good agreement with the available experiment data. It preliminarily shows that the improved method in this paper is feasible, Meanwhile, ice accretion on a four-element wing is studied. According to the analysis of the calculated result, the method presented in the paper can correctly simulate the ice accretion on 3D complex configuration.


Sign in / Sign up

Export Citation Format

Share Document