Numerical Design and Optimization of Casing Treatments for Transonic Axial Compressors

Author(s):  
Michael Hembera ◽  
Florian Danner ◽  
Hans-Peter Kau ◽  
G. Brignole
Author(s):  
J. Paulon ◽  
D. Dehondt

Experimental investigations brought to light the possibilities of broadening the operating range of axial flow compressors by means of outer wall casing treatments such as grooves, honeycombs or cavities. The industrial use of these techniques is however limited by uncertainties on the effectiveness of these treatments as, while they are very beneficial in some cases, they deteriorate the performance of the machine in some others. A theoretical investigation has been conducted on the flow field in cavities most commonly used, and laws for determining the groove depth have been established which account for the surge margin improvement obtained in some cases and make it possible to dismiss inefficient geometric configurations. A comparison between theory and experiment is presented, based on test results published in the literature and on an experimentation on two industrial compressors.


Author(s):  
F. Heinichen ◽  
V. Gu¨mmer ◽  
H.-P. Schiffer

In axial compressors, casing treatments represent a passive method to increase the working range without the need to modify the blade geometry. The majority of the open literature on the topic considers one or several casing treatment variants on the same compressor. The question how one casing treatment and its basic mechanisms can be transferred to a different compressor is only covered in a small number of publications. This paper tries to fill this gap by applying a single circumferential groove type casing treatment to three different transonic compressor rotors. It is demonstrated numerically that the casing treatment is able to improve the aerodynamic performance of all three rotors. Detailed investigation of the flow field near the rotor tip shows that the single circumferential groove works by influencing the interaction between the tip clearance vortex and the shock. Hence, this type of casing treatment can be generalized to transonic rotors with a stall mechanism that is based on tip clearance vortex-shock interaction.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (21) ◽  
pp. 4187-4196 ◽  
Author(s):  
Hazem Salim Damiri ◽  
Hamzeh Khalid Bardaweel

Control of total wall shear stress in ann-generation microfluidic network.


Author(s):  
Ning Ma ◽  
Xi Nan ◽  
Feng Lin

Axial compressors can obtain substantial improvement on stall margin by using axial-slot casing treatments. However, this type of casing treatment usually yields large peak efficiency penalty due to the interaction between the slots and rotor tip region where the tip leakage flow plays an important role. Therefore, as a main factor that influences the peak efficiency, the tip leakage loss was examined in this paper with a variety of slot geometries. Unsteady numerical simulations were performed on both low speed and transonic compressors with axial skewed slot casing treatments with different geometric parameters. In addition, an equation which can be applied to evaluate the tip leakage loss under casing treatment cases was derived from Denton’s leakage mixing model. The leakage loss can be expressed in terms of the cube of the tip leakage flow rate. Combined with the simulation results, the effects of the number, depth and width of the slots on both the leakage loss and peak efficiency deficit were investigated. For the transonic compressor, the impacts of shock wave and its interaction with the tip leakage flow /vortex were assessed as well. Lastly, two axial-slot casing treatments with an isosceles-trapezoid shaped opening were designed to reduce the loss in the rotor tip region. It was shown that the newly designed axial-slot casing treatments were capable of improving the peak efficiency of both compressors.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Guillaume Legras ◽  
Isabelle Trébinjac ◽  
Nicolas Gourdain ◽  
Xavier Ottavy ◽  
Lionel Castillon

Passive control devices based on casing treatments have already shown their capability to improve the flow stability in axial compressors. However, their optimization remains complex due to a partial understanding of the related physical mechanisms. In order to quantitatively assess the interaction between slots and the blade tip flow, the present paper develops a novel analysis methodology based on a control-volume approach located in the rotor tip region. This methodology may be used for analyzing the casing treatment based on both axi- and non-axisymmetric slots design. The second issue of the paper focuses on the application of the current approach to better understand the effects of axi- and non-axisymmetric grooves in three different axial compressors which differ by the flow regime (subsonic/transonic) and the smooth casing shape (cylindrical/concave). Numerical simulations are performed, and results of the current approach with and without casing treatments are compared.


Sign in / Sign up

Export Citation Format

Share Document