Numerical design and optimization of a high compact, broadband optical three-mode selective converter by manipulating ITO-based controllable phase shifters integrated on silicon-on-insulator waveguides

2021 ◽  
Vol 60 (11) ◽  
Author(s):  
Hai Ta Duy ◽  
Duy Nguyen Thi Hang ◽  
Thuy Tran Thi Thanh ◽  
Duy Duong Quang ◽  
Hoang Chu Duc ◽  
...  
Author(s):  
Boris Niraula ◽  
Conrad Rizal

This paper reports 2 × 4 hybrid Mach-zehnder interferometer (MZI) - multi-mode interferometers (MMI) based compact thermo-optical switch consisting of slab waveguides on silicon-on-insulator, SOI, platform. The device consists of two identical MMIs, each of 6 μm wide and 140 μm long connected with two phase shifters MMIs each with 2 μm wide and 8 μm long and linear tappers each 4 μm long, connected at both ends of the MMIs to minimize the power coupling loss. The loss for linear taper is found to be below 0.02dB. The footprint of the whole device is six 6 μm × 324 μm. This structure is based on unique multimode region shape, which leads optical switch to have less coupling loss and reduced cross-talk. The average thermo-optical switching power consumption is 1.4 mW, the excess losses are 0.8 dB, and the imbalances are 0.1 dB. Aluminum is used as a heating pad, and a trench is created around this pad to prevent from spreading of heat and reduce power loss almost by a factor of 2 to the adjacent phase shifter. Our new heating method has advantages of compact size and ease of fabrication with the current CMOS technology.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Benedetto Troia ◽  
Francesco De Leonardis ◽  
Mauro Lanzafame ◽  
Tommaso Muciaccia ◽  
Giuseppe Grasso ◽  
...  

We review polarization splitting and rotating photonic devices based on silicon-on-insulator technology platform, focusing on their performance and design criteria. In addition, we present a theoretical investigation and optimization of some rotator and splitter architectures to be employed for polarization diversity circuits. In this context, fabrication tolerances and their influences on device performance are theoretically estimated by rigorous simulations too.


2013 ◽  
Vol 310 ◽  
pp. 481-485
Author(s):  
Ke Zhao ◽  
Xiao Min Lei ◽  
Guo Feng Xie ◽  
Wen Hua Xiong

Based on a silicon-on-insulator (Silicon-on-insulator, SOI) material system design and optimization of a high performance, the polarization independent of 1 × 3 subwavelength grating stars beam splitter. By a rigorous coupled-wave analysis method showed that, in the 1550nm wavelength range, at vertical incidence, the device on the transverse electric field (transverse electric, TE) ,the 0 and ± 1 order transmittance is 31%, 32%, 32%,respectively; cross the magnetic field (transverse magnetic, TM), the 0 and ± 1 transmittance is 33%, 32%, 32%, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cao Dung Truong ◽  
Duy Nguyen Thi Hang ◽  
Hengky Chandrahalim ◽  
Minh Tuan Trinh

AbstractMultimode optical switch is a key component of mode division multiplexing in modern high-speed optical signal processing. In this paper, we introduce for the first time a novel 2 × 2 multimode switch design and demonstrate in the proof-of-concept. The device composes of four Y-multijunctions and 2 × 2 multimode interference coupler using silicon-on-insulator material with four controllable phase shifters. The shifters operate using thermo-optic effects utilizing Ti heaters enabling simultaneous switching of the optical signal between the output ports on four quasi-transverse electric modes with the electric power consumption is in order of 22.5 mW and the switching time is 5.4 µs. The multimode switch exhibits a low insertion loss and a low crosstalk below − 3 dB and − 19 dB, respectively, in 50 nm bandwidth in the third telecom window from 1525 to 1575 nm. With a compact footprint of 10 µm × 960 µm, this device exhibits a relatively large width tolerance of ± 20 nm and a height tolerance of ± 10 nm. Furthermore, the conceptual principle of the proposed multimode switch can be reconfigurable and scalable in multifunctional on-chip mode-division multiplexing optical interconnects.


Sign in / Sign up

Export Citation Format

Share Document