Numerical design and optimization of cooling system for 2MeV traveling wave accelerator

Author(s):  
Lianguan Shen ◽  
Shaoqing Li ◽  
Jianping Yao ◽  
Xiaoguang Li ◽  
Daoman Jiang ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xinxi Li ◽  
Zhaoda Zhong ◽  
Jinghai Luo ◽  
Ziyuan Wang ◽  
Weizhong Yuan ◽  
...  

Electric vehicles (EVs) powered by lithium batteries, which are a promising type of green transportation, have attracted much attention in recent years. In this study, a thermoelectric generator (TEG) coupled with forced convection (F-C) was designed as an effective and feasible cooling system for a battery thermal management system. A comparison of natural convection cooling, F-C cooling, and TEG cooling reveals that the TEG is the best cooling system. Specifically, this system can decrease the temperature by 16.44% at the discharge rate of 3C. The coupled TEG and F-C cooling system can significantly control temperature at a relatively high discharge rate. This system not only can decrease the temperature of the battery module promptly but also can reduce the energy consumption compared with the two other TEG-based cooling systems. These results are expected to supply an effective basis of the design and optimization of battery thermal management systems to improve the reliability and safety performance of EVs.


Author(s):  
Tunc Icoz ◽  
Yogesh Jaluria

This paper presents a methodology for the design and optimization of the cooling system for electronic equipment. In this approach, inputs from both experimentation and numerical modeling are to be used concurrently to obtain an acceptable or optimal design. The experimental conditions considered are driven by the numerical simulation, and vice versa. Thus, the two approaches are employed in conjunction, rather than separately, as is the case in traditional design methods. Numerical simulation is used to consider different geometries, materials and dimensions, whereas experiments are used for obtaining results for different flow rates and heat inputs, since these can often be varied more easily in experiments than in simulations. Also, transitional and turbulent flows are more accurately and more conveniently investigated experimentally. Thus, by using both the approaches concurrently, the entire design domain is covered, leading to a rapid, convergent, and realistic design process. Two simple configurations of electronic cooling systems are used to demonstrate this approach.


2016 ◽  
Vol 850 ◽  
pp. 679-686
Author(s):  
He Li ◽  
Yi Mei ◽  
Bo Lin ◽  
Hua Qiang Xiao

Cooling system is important in the quality and the efficiency of forming plastic parts. The heat transfer model for conformal chimney cavity and straight pipe cooling system was developed employing thermal analysis module of UG software. The temperature field distributions of two cavities were analyzed. The differences in chimney forming warping deformations, shrinkage and freeze times for the two types of cooling systems were analyzed quantitatively by Moldflow software. The results showed that the temperature field distribution of the conformal cooling system was more homogeneous and the forming quality and efficiency of molding for the plastic parts was better. Finally, the cooling system parameters were optimized through orthogonal test and range analysis method.


Sign in / Sign up

Export Citation Format

Share Document