Minimized Converging Single-Point (MConS) Kinematics: a Novel Approach to Fastening Detachable Spacecraft Structures

Author(s):  
Jared Leidich
Keyword(s):  
2020 ◽  
Vol 70 (4) ◽  
pp. 366-373
Author(s):  
Congliang Ye ◽  
Qi Zhang

To prevent the initiation failure caused by the uncontrolled fuze and improve the weapon reliability in the high-speed double-event fuel-air explosive (DEFAE) application, it is necessary to study the TDF motion trajectory and set up a twice-detonating fuze (TDF) design system. Hence, a novel approach of realising the fixed single-point center initiation by TDF within the fuel air cloud is proposed. Accordingly, a computational model for the TDF motion state with the nonlinear mechanics analysis is built due to the expensive and difficult full-scale experiment. Moreover, the TDF guidance design system is programmed using MATLAB with the equations of mechanical equilibrium. In addition, by this system, influences of various input parameters on the TDF motion trajectory are studied in detail singly. Conclusively, the result of a certain TDF example indicates that this paper provides an economical idea for the TDF design, and the developed graphical user interface of high-efficiency for the weapon designers to facilitate the high-speed DEFAE missile development.


Author(s):  
Sugandhi Midha, Et. al.

The exponential growth of network users has to lead to poor management of networks that use the traditional networking approach. Traditional networking approaches have become an overhead in terms of flexibility, innovations, complexity, and programmability among the network. SDN guarantees a holistic approach to network flexibility and programmability. Network visibility in SDN gives scope for rapid innovation. SDN being a new paradigm, less work has been done towards security. Security is one of the biggest concerns in SDN. Separation of control and data plane in SDN has to lead to the emergence of Denial of Service (DoS) attack. The centralized controller in SDN makes it the best target for attackers and acts as a single point of failure. Attacks on the SDN controller can bring the entire network down. This paper presents an approach to monitor traffic and we propose a novel method to mitigate these anomalies and attacks in the network. We believe that the DoS attack can be toned down using this new technique.


2020 ◽  
Author(s):  
Mikhail Borisover

<p>Sorption-desorption hysteresis (SDH) may control distributions of chemicals between diverse environmental phases, including soils and sediments. Formation of metastable states caused by pore deformation or inelastic swelling of a sorbent and their persistence during desorption were considered in the literature as one reason for "true" SDH. Such metastable states persisting during desorption lead to the lack of closure of sorption-desorption loop at non-zero sorbate concentrations, which is often observed in soil and environmental literature. Also, SDH was often characterized using single-point desorption isotherms (DIs) combining sorbed states reached during single desorption steps started from different points along a sorption isotherm (SI). The objective of this contribution is to demonstrate how the single-point DIs could be used to characterize SDH in liquid phase sorption experiments in terms of Gibbs free energy. This free energy is accumulated in some non-relaxed sorbed states belonging to DI as compared with the states of the same composition (sorbed concentration) belonging to SI. Using the literature data on SIs and single-point DIs of some polycyclic aromatic hydrocarbons and pesticides on soils and sediments, it is shown how these extra free energies could be obtained and how they could change in the selected sorbate-sorbent systems. When the extent of SDH decreases with increasing solute concentration, these additional free energies decline. They may remain constant or even increase, suggesting in the latter case that a larger work is needed to perturb a sorbent structure at higher sorbed concentrations. This paper proposes a novel approach for quantifying and understanding liquid phase SDH in the cases when a thermodynamic justification is sought, and, therefore, it advances the ability to predict the fate and activity of multiple chemicals in typical soil/sediment environments. </p><p><br></p>


1998 ◽  
Vol 79 (04) ◽  
pp. 773-777 ◽  
Author(s):  
Moira Behn ◽  
Marcus Schuermann

SummaryResistance to activated protein C (APC resistance) is the most common cause of thrombophilia and linked to a single point mutation in the factor V gene (G>A transition at nucleotide 1691). In the past, several PCR based methods have been proposed to determine the allelostatus of individual patients from small amounts of blood DNA including PCR followed by restriction fragment length polymorphism detection (PCR-RFLP), PCR using sequence-specific primers (PCR-SSP) and oligonucleotide ligation assay (OLA). Here, we present a novel approach based on the method of peptide nucleic acid(PNA)-mediated PCR clamping which is extremely sensitive to base pair mismatches. If PNAs specific for the two allelic variants are applied separately in each case a clear discrimination between a heterozygous or homozygous normal or homozygous Factor V Leiden status is possible and no further confirmation step is required. In a prospective study, 60 patients with suspected venous thrombosis events were tested and compared to the conventional PCR-RFLP technique. The concordance between both methods was 100%. PNA-based factor V genotyping, therefore, should be considered for large scale screening of those patients considered to be at risk for deep venous thrombosis.


2010 ◽  
Vol 43 (2) ◽  
pp. 264-268 ◽  
Author(s):  
Keith Rogers ◽  
Paul Evans ◽  
Joseph Rogers ◽  
JerWang Chan ◽  
Anthony Dicken

This paper presents the first use of a simple novel geometry that enables the measurement of diffractograms from polycrystalline materials through linear translation of a point detector. The geometry is such that intensities from all points around any Debye ring are summed to a single point, and thus coherently scattered X-rays are harvested efficiently. Data from initial experimental verification of the approach used in transmission mode are presented and the diffractograms compared with their equivalent measured using a pencil beam. Brief discussions of potential modifications in reflection geometry and applications for fibre samples are also provided.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Gottfried Fuchs ◽  
Andreas Steininger

We present a novel approach for the on-chip generation of a fault-tolerant clock. Our method is based on the hardware implementation of a tick synchronization algorithm from the distributed systems community. We discuss the selection of an appropriate algorithm, present the refinement steps necessary to facilitate its efficient mapping to hardware, and elaborate on the key challenges we had to overcome in our actual ASIC implementation. Our measurement results confirm that the approach is indeed capable of creating a globally synchronized clock in a distributed fashion that is tolerant to a (configurable) number of arbitrary faults. This property facilitates eliminating the clock as a single point of failure. Our solution is based on purely asynchronous design, obviating the need for crystal oscillators. It is capable of adapting to parameter variations as well as changes in temperature and power supply–properties that are considered highly desirable for future technology nodes.


2020 ◽  
Author(s):  
Mikhail Borisover

<p>Sorption-desorption hysteresis (SDH) may control distributions of chemicals between diverse environmental phases, including soils and sediments. Formation of metastable states caused by pore deformation or inelastic swelling of a sorbent and their persistence during desorption were considered in the literature as one reason for "true" SDH. Such metastable states persisting during desorption lead to the lack of closure of sorption-desorption loop at non-zero sorbate concentrations, which is often observed in soil and environmental literature. Also, SDH was often characterized using single-point desorption isotherms (DIs) combining sorbed states reached during single desorption steps started from different points along a sorption isotherm (SI). The objective of this contribution is to demonstrate how the single-point DIs could be used to characterize SDH in liquid phase sorption experiments in terms of Gibbs free energy. This free energy is accumulated in some non-relaxed sorbed states belonging to DI as compared with the states of the same composition (sorbed concentration) belonging to SI. Using the literature data on SIs and single-point DIs of some polycyclic aromatic hydrocarbons and pesticides on soils and sediments, it is shown how these extra free energies could be obtained and how they could change in the selected sorbate-sorbent systems. When the extent of SDH decreases with increasing solute concentration, these additional free energies decline. They may remain constant or even increase, suggesting in the latter case that a larger work is needed to perturb a sorbent structure at higher sorbed concentrations. This paper proposes a novel approach for quantifying and understanding liquid phase SDH in the cases when a thermodynamic justification is sought, and, therefore, it advances the ability to predict the fate and activity of multiple chemicals in typical soil/sediment environments. </p><p><br></p>


Author(s):  
Charles E. Andraka

A Dish Stirling parabolic concentrator typically consists of a number of mirror facets that must be aligned to focus the concentrated sunlight on the engine receiver. An alignment strategy must be developed to deliver the energy uniformly to the receiver while maximizing system performance. Several criteria must be met in order to maximize the performance and lifetime of the system. The peak flux should be minimized at the receiver to extend life. This is accomplished by locally optimizing the mirror aimpoints, minimizing overlap of facet images. The energy delivered to each cylinder of a multi-cylinder engine should be balanced to maximize the power production capability of the engine. This is accomplished through globally optimizing the mirror aimpoints. Depending on dish geometry, both of these constraints will be met by moving the aimpoints of certain facets away from a single point at the center of the aperture. However, this often results in a larger aperture or more flux spillage. The larger aperture results in greater thermal and reflective losses from the receiver cavity. This paper proposes and demonstrates a novel approach to optimizing the alignment strategy while obeying these constraints. The method uses an approach similar to molecular dynamics to globally and locally distribute the power on the receiver, while imposing movement constraints at the aperture to limit the focal plane spot size. The method can also impose additional geometric constraints at the receiver plane to accommodate un-cooled surfaces. The method is explored and demonstrated on the Stirling Energy Systems 25kW dish Stirling system at Sandia National Laboratories. The approach provides a receiver flux distribution and power balance equal to the strategy developed by McDonnell Douglas in the early 1980’s, but with an aperture size equal to that of the single aimpoint strategy. This should result in about a 1kW increase in power generated at rated conditions, with no additional cost, due to reduced thermal losses from the receiver. The method can be extended to other point-focus concentrating solar technologies. On a tower, the heliostat aiming strategy could be dynamically updated to accommodate flux profile needs, sun position, or maintenance in the field.


2008 ◽  
Vol 8 (4) ◽  
pp. 14087-14103
Author(s):  
I. Koren ◽  
O. Altaratz ◽  
G. Feingold ◽  
Z. Levin ◽  
T. Reisin

Abstract. As cloud resolving models become more detailed, with higher resolution outputs, it is often complicated to isolate the physical processes that control the cloud attributes. Moreover, due to the high dimensionality and complexity of the model output, the analysis and interpretation of the results can be very complicated. Here we suggest a novel approach to convective cloud analysis that yields more insight into the physical and temporal evolution of clouds, and is compact and efficient. The different (3-D) cloud attributes are weighted and projected onto a single point in space and in time, that has properties of, or similar to, the Center Of Gravity (COG). The location, magnitude and spread of this variable are followed in time. The implications of the COG approach are demonstrated for a study of aerosol effects on a warm convective cloud. We show that in addition to reducing dramatically the dimensionality of the output, such an approach often enhances the signal, adds more information, and makes the physical description of cloud evolution clearer, allowing unambiguous comparison of clouds evolving in different environmental conditions. This approach may also be useful for analysis of cloud data retrieved from surface or space-based cloud radars.


2009 ◽  
Vol 9 (1) ◽  
pp. 155-161 ◽  
Author(s):  
I. Koren ◽  
O. Altaratz ◽  
G. Feingold ◽  
Z. Levin ◽  
T. Reisin

Abstract. As cloud resolving models become more detailed, with higher resolution outputs, it is often complicated to isolate the physical processes that control the cloud attributes. Moreover, due to the high dimensionality and complexity of the model output, the analysis and interpretation of the results can be very complicated. Here we suggest a novel approach to convective cloud analysis that yields more insight into the physical and temporal evolution of clouds, and is compact and efficient. The different (3-D) cloud attributes are weighted and projected onto a single point in space and in time, that has properties of, or similar to, the Center Of Gravity (COG). The location, magnitude and spread of this variable are followed in time. The implications of the COG approach are demonstrated for a study of aerosol effects on a warm convective cloud. We show that in addition to reducing dramatically the dimensionality of the output, such an approach often enhances the signal, adds more information, and makes the physical description of cloud evolution clearer, allowing unambiguous comparison of clouds evolving in different environmental conditions. This approach may also be useful for analysis of cloud data retrieved from surface or space-based cloud radars.


Sign in / Sign up

Export Citation Format

Share Document