Experimental Observations of Damage States in Unnotched and Notched 3D Orthogonal Woven Coupons Loaded in Tension

2022 ◽  
Author(s):  
Wade C. Jackson ◽  
Andrew Bergan ◽  
Cheryl A. Rose ◽  
Kenneth N. Segal ◽  
Nathaniel W. Gardner ◽  
...  
Author(s):  
Marco Donà ◽  
Pietro Carpanese ◽  
Veronica Follador ◽  
Luca Sbrogiò ◽  
Francesca da Porto

Abstract Seismic risk assessment at the territorial level is now widely recognised as essential for countries with intense seismic activity, such as Italy. Academia is called to give its contribution in order to synergically deepen the knowledge about the various components of this risk, starting from the complex evaluation of vulnerability of the built heritage. In line with this, a mechanics-based seismic fragility model for Italian residential masonry buildings was developed and presented in this paper. This model is based on the classification of the building stock in macro-typologies, defined by age of construction and number of storeys, which being information available at national level, allow simulating damage scenarios and carrying out risk analyses on a territorial scale. The model is developed on the fragility of over 500 buildings, sampled according to national representativeness criteria and analysed through the Vulnus_4.0 software. The calculated fragility functions were extended on the basis of a reference model available in the literature, which provides generic fragilities for the EMS98 vulnerability classes, thus obtaining a fragility model defined on the five EMS98 damage states. Lastly, to assess the reliability of the proposed model, this was used to simulate damage scenarios due to the 2009 L’Aquila earthquake. Overall, the comparison between model results and observed damage showed a good fit, proving the model effectiveness.


2011 ◽  
Vol 488-489 ◽  
pp. 759-762
Author(s):  
L.Y. Li ◽  
M.H. Aliabadi ◽  
Pi Hua Wen

A Meshfree approach for continuum damage modeling of 3D orthogonal woven composites is presented. Two different shape function constructions, Radial basis (RB) function and Moving kriging (MK) interpolation, are utilized corresponding with Galerkin method in the Meshfree approach. The failure of two different unit cell models, straight-edge and smooth fabric unit cell model respectively, is compared.


2011 ◽  
Vol 38 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Elena Nuta ◽  
Constantin Christopoulos ◽  
Jeffrey A. Packer

The seismic response of tubular steel wind turbine towers is of significant concern as they are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. The seismic hazard is hence assessed for the Canadian seismic environment using implicit finite element analysis and incremental dynamic analysis of a 1.65 MW wind turbine tower. Its behaviour under seismic excitation is evaluated, damage states are defined, and a framework is developed for determining the probability of damage of the tower at varying seismic hazard levels. Results of the implementation of this framework in two Canadian locations are presented herein, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, and the design spectrum is highly uncertain. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under any seismic loading conditions for future considerations.


1985 ◽  
Vol 38 (10) ◽  
pp. 1267-1270 ◽  
Author(s):  
R. M. Christensen

Fiber-reinforced composite materials offer considerable performance advantages over conventional materials. New fiber developments place a premium upon understanding the mechanical interactions between phases in order to optimize the composition. Of particular importance are the means of quantifying damage states and predicting nonlinear behavior. Special attention is given to such areas as damage/failure/life prediction, environmental effects, nondestructive evaluation, interface conditions, and data base generation.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 452
Author(s):  
Qun Yang ◽  
Dejian Shen

Natural hazards have caused damages to structures and economic losses worldwide. Post-hazard responses require accurate and fast damage detection and assessment. In many studies, the development of data-driven damage detection within the research community of structural health monitoring has emerged due to the advances in deep learning models. Most data-driven models for damage detection focus on classifying different damage states and hence damage states cannot be effectively quantified. To address such a deficiency in data-driven damage detection, we propose a sequence-to-sequence (Seq2Seq) model to quantify a probability of damage. The model was trained to learn damage representations with only undamaged signals and then quantify the probability of damage by feeding damaged signals into models. We tested the validity of our proposed Seq2Seq model with a signal dataset which was collected from a two-story timber building subjected to shake table tests. Our results show that our Seq2Seq model has a strong capability of distinguishing damage representations and quantifying the probability of damage in terms of highlighting the regions of interest.


2012 ◽  
Vol 588-589 ◽  
pp. 278-282
Author(s):  
Zhi Wei Ma ◽  
Yu Xiu Xu ◽  
Shi Rong Xing

By doing modal analysis of the whole wind turbine system, we can get the first twenty orders natural frequencies and corresponding mode shapes, By analyzing the dynamic characteristics of the blade, the weakness points of blade were fund. Under rotor rotating excitation in the normal state, mass eccentricity states and stiffness damage states of blade, the strain energy change rates (SECR) of nacelle are obtained. While based on the SECR of nacelle, the methods of strain energy change rate and support vector machine are introduced to indentify locate the mass eccentricity and stiffness damages of blade. The research show that mass eccentricity and stiffness damages at different location and in different degree can be efficiency identified and forecasted by means of support vector machine classification method.


Holzforschung ◽  
2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Jan-Erik Berg ◽  
Mårten E. Gulliksson ◽  
Per A. Gradin

Abstract An analytical model has been applied to calculate the acquired strain energy density in order to achieve a certain damage state in a softwood fibre by uniaxial tension or shear load. The energy density was found to be dependent on the microfibril angle in the middle secondary wall, the loading case, the thicknesses of the fibre cell wall layers, and conditions, such as moisture content and temperature. At conditions, prevailing at the entrance of the gap between the plates in a refiner and at relative high damage states, more energy is needed to create cracks at higher microfibril angles. The energy density was lower for earlywood compared to latewood fibres. For low microfibril angles, the energy density was lower for loading in shear compared to tension for both earlywood and latewood fibres. Material parameters, such as initial damage state and specific fracture energy, were determined by fitting of input parameters to experimental data.


2010 ◽  
Vol 45 (9) ◽  
pp. 965-987 ◽  
Author(s):  
Xiwen Jia ◽  
Baozhong Sun ◽  
Bohong Gu

Ballistic penetration of conically cylindrical steel projectile into 3D orthogonal woven composite (3DOWC) was investigated from finite element analyses and ballistic impact tests. Based on the observation of the microstructure of the 3DOWC, a microstructure model was established for finite element calculation. In this model, the cross-section of warp, weft and Z-direction fiber tows was regarded as rectangular. The noninterwoven warp and weft yarns were bonded together with Z-yarns. The impact damage and energy absorption of the 3DOWC penetrated by a conically cylindrical steel projectile were calculated from the microstructure model and compared with the testing results. Good agreements with experiments have been observed, especially for deformation, damage evolution, and strain wave distribution in the 3DOWC under ballistic penetration.


Sign in / Sign up

Export Citation Format

Share Document