scholarly journals Varying Conditions in Intertidal Pools: High Resolution pH Dynamics and Primary Production

Author(s):  
Celso A. Hernández Díaz ◽  
◽  
José Carlos Hernández ◽  
Author(s):  
A. Chhabra ◽  
V. Madhava Rao ◽  
R. R. Hermon ◽  
A. Garg ◽  
T. Nag ◽  
...  

India is predominantly an agricultural and rural country. Across the country, the villages vary in geographical location, area, human and livestock population, availability of resources, agricultural practices, livelihood patterns etc. This study presents an estimation of net energy balance resulting from primary production vis-a-vis energy consumption through various components in a "Rural Ecosystem". Seven sites located in different agroclimatic regions of India were studied. An end use energy accounting "Rural Energy Balance Model" is developed for input-output analysis of various energy flows of production, consumption, import and export through various components of crop, trees outside forest plantations, livestock, rural households, industry or trade within the village system boundary. An integrated approach using field, ancillary, GIS and high resolution IRS-P6 Resourcesat-2 LISS IV data is adopted for generation of various model inputs. The primary and secondary field data collection of various energy uses at household and village level were carried out using structured schedules and questionnaires. High resolution multi-temporal Resourcesat-2 LISS IV data (2013–14) was used for generating landuse/landcover maps and estimation of above-ground Trees Outside Forests phytomass. The model inputs were converted to energy equivalents using country-specific energy conversion factors. A comprehensive geotagged database of sampled households and available resources at each study site was also developed in ArcGIS framework. Across the study sites, the estimated net energy balance ranged from −18.8 Terra Joules (TJ) in a high energy consuming Hodka village, Gujarat to 224.7 TJ in an agriculture, aquaculture and plantation intensive Kollaparru village, Andhra Pradesh. The results indicate that the net energy balance of a Rural Ecosystem is largely driven by primary production through crops and natural vegetation. This study provides a significant insight to policy relevant recommendations for Energy Sustainable Rural India.


2004 ◽  
Vol 211 (1-2) ◽  
pp. 79-99 ◽  
Author(s):  
Gabriel Vargas ◽  
Luc Ortlieb ◽  
Jean Jacques Pichon ◽  
Jacques Bertaux ◽  
Michel Pujos

2018 ◽  
Vol 10 (11) ◽  
pp. 1748 ◽  
Author(s):  
Tao Yu ◽  
Rui Sun ◽  
Zhiqiang Xiao ◽  
Qiang Zhang ◽  
Juanmin Wang ◽  
...  

Accurately estimating vegetation productivity is important in the research of terrestrial ecosystems, carbon cycles and climate change. Although several gross primary production (GPP) and net primary production (NPP) products have been generated and many algorithms developed, advances are still needed to exploit multi-scale data streams for producing GPP and NPP with higher spatial and temporal resolution. In this paper, a method to generate high spatial resolution (30 m) GPP and NPP products was developed based on multi-scale remote sensing data and a downscaling method. First, high resolution fraction photosynthetically active radiation (FPAR) and leaf area index (LAI) were obtained by using a regression tree approach and the spatial and temporal adaptive reflectance fusion model (STARFM). Second, the GPP and NPP were estimated from a multi-source data synergized quantitative algorithm. Finally, the vegetation productivity estimates were validated with the ground-based field data, and were compared with MODerate Resolution Imaging Spectroradiometer (MODIS) and estimated Global LAnd Surface Satellite (GLASS) products. Results of this paper indicated that downscaling methods have great potential in generating high resolution GPP and NPP.


2019 ◽  
Vol 15 (5) ◽  
pp. 1715-1739 ◽  
Author(s):  
Mitchell Lyle ◽  
Anna Joy Drury ◽  
Jun Tian ◽  
Roy Wilkens ◽  
Thomas Westerhold

Abstract. Coherent variation in CaCO3 burial is a feature of the Cenozoic eastern equatorial Pacific. Nevertheless, there has been a long-standing ambiguity in whether changes in CaCO3 dissolution or changes in equatorial primary production might cause the variability. Since productivity and dissolution leave distinctive regional signals, a regional synthesis of data using updated age models and high-resolution stratigraphic correlation is an important constraint to distinguish between dissolution and production as factors that cause low CaCO3. Furthermore, the new chronostratigraphy is an important foundation for future paleoceanographic studies. The ability to distinguish between primary production and dissolution is also important to establish a regional carbonate compensation depth (CCD). We report late Miocene to Holocene time series of XRF-derived (X-ray fluorescence) bulk sediment composition and mass accumulation rates (MARs) from eastern equatorial Pacific Integrated Ocean Drilling Program (IODP) sites U1335, U1337, and U1338 and Ocean Drilling Program (ODP) site 849, and we also report bulk-density-derived CaCO3 MARs at ODP sites 848, 850, and 851. We use physical properties, XRF bulk chemical scans, and images along with available chronostratigraphy to intercorrelate records in depth space. We then apply a new equatorial Pacific age model to create correlated age records for the last 8 Myr with resolutions of 1–2 kyr. Large magnitude changes in CaCO3 and bio-SiO2 (biogenic opal) MARs occurred within that time period but clay deposition has remained relatively constant, indicating that changes in Fe deposition from dust is only a secondary feedback to equatorial productivity. Because clay deposition is relatively constant, ratios of CaCO3 % or biogenic SiO2 % to clay emulate changes in biogenic MAR. We define five major Pliocene–Pleistocene low CaCO3 % (PPLC) intervals since 5.3 Ma. Two were caused primarily by high bio-SiO2 burial that diluted CaCO3 (PPLC-2, 1685–2135 ka, and PPLC-5, 4465–4737 ka), while three were caused by enhanced dissolution of CaCO3 (PPLC-1, 51–402 ka, PPLC-3, 2248–2684 ka, and PPLC-4, 2915–4093 ka). Regional patterns of CaCO3 % minima can distinguish between low CaCO3 caused by high diatom bio-SiO2 dilution versus lows caused by high CaCO3 dissolution. CaCO3 dissolution can be confirmed through scanning XRF measurements of Ba. High diatom production causes lowest CaCO3 % within the equatorial high productivity zone, while higher dissolution causes lowest CaCO3 percent at higher latitudes where CaCO3 production is lower. The two diatom production intervals, PPLC-2 and PPLC-5, have different geographic footprints from each other because of regional changes in eastern Pacific nutrient storage after the closure of the Central American Seaway. Because of the regional variability in carbonate production and sedimentation, the carbonate compensation depth (CCD) approach is only useful to examine large changes in CaCO3 dissolution.


Sign in / Sign up

Export Citation Format

Share Document