scholarly journals Computer Simulations of Electromagnetic Emissions Produced via Injection of Electron Beam into a Plasma with Strong Transverse Density Gradients

2019 ◽  
Vol 14 (4) ◽  
pp. 5-16
Author(s):  
V. V. Glinskiy ◽  
I. V. Timofeev ◽  
V. V. Annenkov ◽  
A. V. Arzhannikov

Recent experiments on the injection of kiloampere electron beams into a magnetized plasma at the GOL-PET facility have shown that the power of sub-terahertz radiation escaping from the plasma along the magnetic field increases by more than an order of magnitude if strong transverse density gradients are preliminarily created in the plasma. In this paper, the influence of transverse in homogeneities of plasma density on the efficiency of electromagnetic radiation generation near the harmonics of the plasma frequency is studied using particle-in-cell simulations. Simulations performed for the real relative density of the beam and the real spatial scales of the in homogeneity show that the beam instability develops only in the density wells, and the small transverse size of its localization comparable with the wavelength contributes to a more efficient conversion of unstable oscillations into electromagnetic ones. Despite the fact that radiation at the plasma frequency is blocked across the leading magnetic field, it can leave the generation region with the decrease of the plasma density in the longitudinal direction.

2021 ◽  
Vol 923 (2) ◽  
pp. 208
Author(s):  
Siddhartha Gupta ◽  
Damiano Caprioli ◽  
Colby C. Haggerty

Abstract A strong super-Alfvénic drift of energetic particles (or cosmic rays) in a magnetized plasma can amplify the magnetic field significantly through nonresonant streaming instability (NRSI). While the traditional analysis is done for an ion current, here we use kinetic particle-in-cell simulations to study how the NRSI behaves when it is driven by electrons or by a mixture of electrons and positrons. In particular, we characterize the growth rate, spectrum, and helicity of the unstable modes, as well the level of the magnetic field at saturation. Our results are potentially relevant for several space/astrophysical environments (e.g., electron strahl in the solar wind, at oblique nonrelativistic shocks, around pulsar wind nebulae), and also in laboratory experiments.


2021 ◽  
Vol 87 (5) ◽  
Author(s):  
Srimanta Maity ◽  
Devshree Mandal ◽  
Ayushi Vashistha ◽  
Laxman Prasad Goswami ◽  
Amita Das

The mechanism of harmonic generation in both O- and X-mode configurations for a magnetized plasma has been explored here in detail with the help of particle-in-cell simulations. A detailed characterization of both the reflected and transmitted electromagnetic radiation propagating in the bulk of the plasma has been carried out for this purpose. The efficiency of harmonic generation is shown to increase with the incident laser intensity. A dependency of harmonic efficiency has also been found on magnetic field strength. This work demonstrates that there is an optimum value of the magnetic field at which the efficiency of harmonic generation maximizes. The observations are in agreement with theoretical analysis. For the O-mode configuration, this is compelling as the harmonic generation provides for a mechanism by which laser energy can propagate inside an overdense plasma region.


2004 ◽  
Vol 22 (6) ◽  
pp. 2081-2096 ◽  
Author(s):  
V. Génot ◽  
P. Louarn ◽  
F. Mottez

Abstract. Investigating the process of electron acceleration in auroral regions, we present a study of the temporal evolution of the interaction of Alfvén waves (AW) with a plasma inhomogeneous in a direction transverse to the static magnetic field. This type of inhomogeneity is typical of the density cavities extended along the magnetic field in auroral acceleration regions. We use self-consistent Particle In Cell (PIC) simulations which are able to reproduce the full nonlinear evolution of the electromagnetic waves, as well as the trajectories of ions and electrons in phase space. Physical processes are studied down to the ion Larmor radius and electron skin depth scales. We show that the AW propagation on sharp density gradients leads to the formation of a significant parallel (to the magnetic field) electric field (E-field). It results from an electric charge separation generated on the density gradients by the polarization drift associated with the time varying AW E-field. Its amplitude may reach a few percents of the AW E-field. This parallel component accelerates electrons up to keV energies over a distance of a few hundred Debye lengths, and induces the formation of electron beams. These beams trigger electrostatic plasma instabilities which evolve toward the formation of nonlinear electrostatic structures (identified as electron holes and double layers). When the electrostatic turbulence is fully developed we show that it reduces the further wave/particle exchange. This sequence of mechanisms is analyzed with the program WHAMP, to identify the instabilities at work and wavelet analysis techniques are used to characterize the regime of energy conversions (from electromagnetic to electrostatic structures, from large to small length scales). This study elucidates a possible scenario to account for the particle acceleration and the wave dissipation in inhomogeneous plasmas. It would consist of successive phases of acceleration along the magnetic field, the development of an electrostatic turbulence, the thermalization and the heating of the plasma. Space plasma physics (charged particle motion and acceleration; numerical studies).


Author(s):  
Haiying Li ◽  
Jiachen Tong ◽  
Wei Ding ◽  
Bing Xu ◽  
Lu Bai

Abstract The transmission of terahertz (THz) Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions (CVWFs) and Fourier transform. On the basis of the electromagnetic boundary conditions on each interface, a cascade form of expansion coefficients of the reflected and transmitted fields is obtained. Taking a double Gaussian distribution of the plasma density as an example, the influences of the applied magnetic field, the incident angle and polarization mode of the incident beams on the magnitude, OAM mode and polarization of the transmitted beams are analyzed in detail. The results indicate that the applied magnetic field has a major effect upon the polarization state of the transmitted fields but not upon the transmitted OAM spectrum. The incident angle has a powerful influence upon both the amplitude profile and the OAM spectrum of the transmitted beam. Furthermore, for multiple coaxial vortex beams, an increase of the maximum value of the plasma density causes more remarkable distortion of both the profile and OAM spectrum of the transmitted beam. This research makes a stable foundation for the THz OAM multiplexing/demultiplexing technology in magnetized plasma environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Devshree Mandal ◽  
Ayushi Vashistha ◽  
Amita Das

AbstractAn electromagnetic (EM) pulse falling on a plasma medium from vacuum can either reflect, get absorbed or propagate inside the plasma depending on whether it is overdense or underdense. In a magnetized plasma, however, there are usually several pass and stop bands for the EM wave depending on the orientation of the magnetic field with respect to the propagation direction. The EM wave while propagating in a plasma can also excite electrostatic disturbances in the plasma. In this work Particle-In-Cell simulations have been carried out to illustrate the complete transparency of the EM wave propagation inside a strongly magnetized plasma. The external magnetic field is chosen to be perpendicular to both the wave propagation direction and the electric field of the EM wave, which is the X mode configuration. Despite the presence of charged electron and ion species the plasma medium behaves like a vacuum. The observation is understood with the help of particle drifts. It is shown that though the two particle species move under the influence of EM fields their motion does not lead to any charge or current source to alter the dispersion relation of the EM wave propagating in the medium. Furthermore, it is also shown that the stop band for EM wave in this regime shrinks to a zero width as both the resonance and cut-off points approach each other. Thus, transparency to the EM radiation in such a strongly magnetized case appears to be a norm.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Amir Rahimian ◽  
Hossien Zahed

We have conducted particle-in-cell (PIC) simulations of a linearly polarized intensive laser pulse with two different envelopes propagating through a homogeneous fully ionized cold plasma. It is shown that the amplitude of the wake field depends on laser wavelength, pulse duration, electron number density and envelope shape. We have also simulated the effect of applying a longitudinal magnetic field on the wake field excitation process. It is observed that magnetic field enhances the wake field and increases its intensity in all cases. Our results are in agreement with the analytical results presented by Askari and Shahidani [Opt. Laser Technol.45, 613–619 (2013)] and can help choosing the optimum values of affecting laser and plasma parameters in order to reach high accelerating wake electric fields.


2021 ◽  
Vol 39 (4) ◽  
pp. 571-598
Author(s):  
Christian Mazelle ◽  
Bertrand Lembège

Abstract. The nonstationarity of the terrestrial bow shock is analyzed in detail from in situ magnetic field measurements issued from the fluxgate magnetometer (FGM) experiment of the Cluster mission. Attention is focused on statistical analysis of quasi-perpendicular supercritical shock crossings. The present analysis stresses for the first time the importance of a careful and accurate methodology in the data processing, which can be a source of confusion and misunderstanding if not treated properly. The analysis performed using 96 shock front crossings shows evidence of a strong variability of the microstructures of the shock front (foot and ramp), which are analyzed in great detail. The main results are that (i) most statistics clearly show that the ramp thickness is very narrow and can be as low as a few c/ωpe (electron inertia length); (ii) the width is narrower when the angle θBn (between the shock normal and the upstream magnetic field) approaches 90∘; (iii) the foot thickness strongly varies, but its variation has an upper limit provided by theoretical estimates given in previous studies (e.g., Schwartz et al., 1983; Gosling and Thomsen, 1985; Gosling and Robson, 1985); and (iv) the presence of foot and overshoot, as shown in all front profiles, confirms the importance of dissipative effects. Present results indicate that these features can be signatures of the shock front self-reformation among a few mechanisms of nonstationarity identified from numerical simulation and theoretical studies. A comparison with 2D particle-in-cell (PIC) simulation for a perpendicular supercritical shock (used as reference) has been performed and shows the following: (a) the ramp thickness varies only slightly in time over a large fraction of the reformation cycle and reaches a lower-bound value on the order of a few electron inertial length; (b) in contrast, the foot width strongly varies during a self-reformation cycle but always stays lower than an upper-bound value in agreement with the value given by Woods (1971); and (c) as a consequence, the time variability of the whole shock front is depending on both ramp and foot variations. Moreover, a detailed comparative analysis shows that many elements of analysis were missing in previous reported studies concerning both (i) the important criteria used in the data selection and (ii) the different and careful steps of the methodology used in the data processing itself. The absence of these precise elements of analysis makes the comparison with the present work difficult; worse, it makes some final results and conclusive statements quite questionable at the present time. At least, looking for a precise estimate of the shock transition thickness presents nowadays a restricted interest, since recent results show that the terrestrial shock is rather nonstationary, and one unique typical spatial scaling of the microstructures of the front (ramp, foot) must be replaced by some “variation ranges” (with lower-bound and upper-bound values) within which the spatial scales of the fine structures can extend.


Sign in / Sign up

Export Citation Format

Share Document