scholarly journals Design and technological provision of wear resistance of elastomer surface of rubber-cord casings of damping devices

2021 ◽  
pp. 25-28
Author(s):  
V. G. Churankin ◽  
◽  
A. V. Lyamtsev ◽  
V. V. Derkach ◽  
◽  
...  

Two main factors are considered that determining the friction between non-lubricated surfaces of an elastomer and a solid base during their relative motion. The first one is adhesion in the areas of real (actual) catalysis and the second factor is the deformation component, which is due to the delay of recovery of the elastomer after the irregularity is introduced and it is called the hysteresis component of friction. One of the main problems of increasing the resource of pneumatic dampers is minimizing the wear of the covering layer of the rubber-cord casing (RCC). The wear of the RCC is due to the fact that sliding friction occurs in the process of contact between the metal surface and the surface of the RCC, as a result of which the cover layer of the RCC (in some cases with the first cord layer) wears out, depending on the chemical composition of the rubber and the features of the operation of the pneumatic shock absorber. In order to minimize the wear of rubber, it is proposed to change the design of the pneumatic damper so that rolling friction dominates in the contact between the surfaces of rubber and metal

Author(s):  
D. M. Berdiev ◽  
M. A. Uмаrоvа ◽  
A. A. Yusupov

The relationships between the parameters of the structure of heat‑treated steels and their abrasive wear resistance are established. At all temperatures of the final tempering of hardened steel, there is a direct relationship between its structure parameters (the number of elements in a solid solution, the density of dislocations, the size of cementite particles and the intercementite distance) and wear resistance when sliding friction against loose abrasive particles. A computer program has been developed to select the chemical composition of the steel grade and methods of thermal hardening in order to ensure the required wear resistance.


2015 ◽  
Vol 1120-1121 ◽  
pp. 254-259
Author(s):  
Chun Hua Hu ◽  
Hai Jiang ◽  
Yun Feng Du ◽  
Hai Peng Wang ◽  
Zhi Chang Deng

The paper studied the effect of n-Na2B4O7additives of different content on tribological performances of the ion nitrocarburized layer. It is found that 7% n-Na2B4O7additive can improve greatly the friction reduction and wear resistance of the ion nitrocarburized layer under different conditions. This because that synergetic effect of friction reduction and wear resistance is produced between n-Na2B4O7additive and ion nitrocarburized layer under higher temperature, frequence and load, and the chemical reaction films including oxide, nitride, BN, and sulphide and so on formed on the friction surface play the solid lubrication function, and the n-Na2B4O7particles on the friction surface play the "Micron nanobearing" function, translating the sliding friction into the rolling friction, which can make the ion nitrocarburized layer possess the excellent tribological performances.


2013 ◽  
Vol 58 (3) ◽  
pp. 813-816 ◽  
Author(s):  
S. Byelikov ◽  
I. Volchok ◽  
I. Akimov

Abstract Heat-treated graphitized steels with different carbon, silicon and copper contents have been the object of study. The influence of the composition on the structure and wear resistance (weight loss of the specimen) of graphitized steels (after hardening and tempering) under the conditions of metal to metal dry sliding friction with the use of Amsler-type friction machines, has been investigated in this work. Research results have shown that the main factors affecting wear resistance of graphitized steels have been not only their metal base hardness, but the quantity, shape and distribution of graphite inclusions uniformity in the structure of such steels as well. A regression dependence of the quantity of specimen’s weight loss on carbon, silicon and copper content has been obtained in the work. The highest wear resistance was pertained by the steel having the following content: 1.60. . . 1.70%C; 2.20. . . 2.30%Si; 0.80. . . 0.90%Cu; 0.60. . . 0.70%Mn; 0.15. . . 0.18%Cr; 0.22. . . 0.25%Al; up to 0.015%S and 0.024%P.


Tribologia ◽  
2018 ◽  
Vol 278 (2) ◽  
pp. 37-44 ◽  
Author(s):  
Elżbieta KALINOWSKA-OZGOWICZ ◽  
Klaudiusz LENIK ◽  
Sylwester KORGA

This paper presents the results of investigations on the effect of thermochemical treatment, boronising and chemical composition of selected structural steels on their wear in sliding friction process. The operation of boronising on C45, 37CrNiMo, 42CrMo6, 41Cr4, 50CrSi4-4 steels was performed by powder method at 950°C for 8 h. Following this operation, rod sections of the test steels were subjected to quench hardening from 850°C with isothermal holding at 300°C for 1h. The assessment of the construction, thickness and microhardness of boronised layers depending on the level of carbon and alloying elements in chemical composition of analysed steels was made. The testing for wear resistance of steels after boronising was carried out with the sliding friction method by applying a load of 150 N, counter-sample rotational speed of 1000 rpm and using aqueous solution of potassium chromate as a cooling medium. The metallographic observations of the structure and thickness measurement of the boronised layers were carried out using a light microscope, while the identification of phases was made by the X-ray qualitative analysis method. The hardness and microhardness measurements were taken by the Vickers method.


Alloy Digest ◽  
2003 ◽  
Vol 52 (10) ◽  

Abstract Kaiser Aluminum alloy 4026 has high strength and good wear resistance, as well as galling resistance. It was developed for sliding friction resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating. Filing Code: AL-385. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Eugenia Pantru ◽  
Gheorghit Jinescu ◽  
Rozalia R�dulescu ◽  
Antoneta Filcenco Olteanu ◽  
Cosmin Jinescu

This paper presents an intensive procedure used for the decontamination of the soils, which were radioactively contaminated by uranium, due to the occurrence of some antropic accidents, in order to limit the area�s pollution. The procedure used for the chemical decontamination of the polluted soils was the washing one and the decontamination degree is comparatively presented depending on the ultrasounds� presence and absence. The lab testes were performed on five types of soils , which were characterized from the granulometric, structural and chemical composition viewpoint, all these aspects represent the main factors, which determine the applied decontamination procedure�s limits and performances correlated with its utilization costs. The decontamination procedure�s kinetics for each type of soils was analyzed, using successively three different types of reagents (water, 0.1 M sulphuric acid solution and chloro-sodic solution � 100 g/L sodium chloride + 10 g/L sodium carbonate in water) for a solid to liquid ratio of 1:2, during 2 h, at a temperature of 20oC in a mechanic stirring system respectively in ultrasounds field. It was observed that the decontamination degree increases with up to 15-20% in case of the ultrasound field utilization comparing to the first case.


2011 ◽  
Vol 421 ◽  
pp. 724-727
Author(s):  
Xue Feng Yi ◽  
Li Jun He

Children scooter safety performance is not good enough in the market, the cause of the majority of injuries to children is difficult to control the speed or emergency braking. According to the phenomenon, this paper focuses on designing dynamic scooter brake device for 8-10 child, we conceive that the brake device is given the force of the rolling friction and the sliding friction, so it can play a dual brake effect. It will enhance the security and stability of children dynamic scooter.


2021 ◽  
Vol 410 ◽  
pp. 475-481
Author(s):  
Anvar M. Kadyrmetov ◽  
Dmitri A. Popov ◽  
Yevgeny V. Snyatkov

The article presents the research results of the plasma jet multiple reflow effect over the multicomponent coating FeCoCrAlTiCuNiMo, obtained by plasma metallization in an open atmosphere, on its wear resistance under dry sliding friction. The research results indirectly confirm the influence of the coating entropy over the wear resistance increasing along of the reflow number growth.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


2021 ◽  
Vol 316 ◽  
pp. 893-898
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Artem Kravchenko ◽  
Oleg Kryuchkov

We conducted comparative tests of the wear resistance of metals operating under abrasive conditions. Samples were cut from the working parts of mixer-pneumosuperchargers. The chemical composition and mechanical properties were determined. To compare samples under abrasive wear conditions, we designed and assembled a carousel installation. The principle of its operation is based on mixing the abrasive medium by the samples being studied with a given speed. Wear resistance was evaluated by weight loss by samples after several test cycles. To determine changes in the structure of the metal during abrasive wear, metallographic studies of the samples were carried out before and after the tests. It is shown that the best complex of service and mechanical properties is possessed by 110G13L steel.


Sign in / Sign up

Export Citation Format

Share Document