Analysis of Wear-Resistant Materials of Mixer - Pneumosuperchargers Blades Operating under Conditions of Abrasive Wear

2021 ◽  
Vol 316 ◽  
pp. 893-898
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Artem Kravchenko ◽  
Oleg Kryuchkov

We conducted comparative tests of the wear resistance of metals operating under abrasive conditions. Samples were cut from the working parts of mixer-pneumosuperchargers. The chemical composition and mechanical properties were determined. To compare samples under abrasive wear conditions, we designed and assembled a carousel installation. The principle of its operation is based on mixing the abrasive medium by the samples being studied with a given speed. Wear resistance was evaluated by weight loss by samples after several test cycles. To determine changes in the structure of the metal during abrasive wear, metallographic studies of the samples were carried out before and after the tests. It is shown that the best complex of service and mechanical properties is possessed by 110G13L steel.

2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Oscar Fabián Higuera-Cobos ◽  
Jeison Bucurú-Vasco ◽  
Andrés Felipe Loaiza-Patiño ◽  
Mónica Johanna Monsalve-Arias ◽  
Dairo Hernán Mesa-Grajales

This paper studies the influence of variables such as holding temperatures and times during austempering of High Chromium White Cast Iron (HCWCI), with the following chemical composition: Cr 25 %, C 3 %, Si 0.47 %, Mn 0.74 % and Mo 1.02 %. The aim of the austempering was to modify the percentage of retained austenite and its correlation to abrasive wear resistance under different conditions.Microhardness tests, SEM-EDS and XRD were performed to determine mechanical properties, chemical composition, and type of carbides and microstructures present, respectively. The tests complied with the ASTM G-65 standard. Results showed that the best performance against abrasion was achieved for austempering at 450 ºC with holding time of 6 hours.


Author(s):  
N. A. Kozyrev ◽  
A. A. Usol’tsev ◽  
R. E. Kryukov ◽  
A. I. Gusev ◽  
I. V. Osetkovskii

To protect and repair details of equipment, subjected to abrasive and shock-and-abrasive wear, a build-up of hard alloy is widely used to increase the wear resistance of details, operating under abrasion conditions. Cored wires of Fe−C−Si−Мn−Сr−Ni−Mo system of type A and B by MIS classification are the main wires used for wear-resistant build-up in Russia. For effective application of building-up wires it is necessary to know the dependence of built-up layer hardness and its wear resistance on mass share of elements included into the composition of the cored wires systems. Influence of chemical composition of he built-up layer, obtained by the building-up with application of new powder systems of Fe−C−Si−Мn−Сr−Ni−Mo, protected by RF patents, on its physical and mechanical properties studied. Based on the results of the multifactor correlation analysis accomplished, dependences of the built-up layer hardness and its wear resistance on mass share of elements included into the composition of the cored wires of Fe−C−Si−Мn−Сr−Ni−Mo system determined. The dependences obtained were used for forecasting of the built-up layer hardness and its wear resistance at changes of the chemical composition of the built-up layer. The tests of JOY 4LS20 mining machine screw protective plates at Kemerovo region mines, built-up by the elaborated cored wire, showed an increase of the resistance by 19.3% comparing with the analog plates built-up by DRATEC wire.


2011 ◽  
Vol 312-315 ◽  
pp. 199-204
Author(s):  
K. Khenfer ◽  
S. Lebaili ◽  
S. Hamar-Thibault

The mechanical engineering industry is always in the search of new hardfacing alloys which nowadays make it possible to solve considerable delicate problems of abrasive wear and corrosion. These alloys are heterogeneous materials and are generally composed of a ductile matrix and a significant proportion in hard phases (carbides, borides or silicides), which give a good wear resistance and corrosion. The following studies made on alloys containing Ni, rich in Silicon and tungsten. We noted that addition of these elements (Si and W) got interesting mechanical properties. The alloys that we chose for this study contain the elements C, B, Si, Cr and W with additions in Ti and Mo. The aim of this work is the characterisation of the various phases formed during solidification, to study chemical affinities in this system poly-constitutes and to make a correlation between the chemical composition, the conditions of development and the microstructures obtained.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


2018 ◽  
Vol 27 (47) ◽  
pp. 101
Author(s):  
Sandra Arias ◽  
Maryory Gómez ◽  
Esteban Correa ◽  
Félix Echeverría-Echeverría ◽  
Juan Guillermo Castaño

Nickel-Boron autocatalytic coatings are widely used in several industries to improve mechanical properties of materials such as hardness and wear resistance. Tribological properties were evaluated in Ni-B autocatalytic coatings deposited on AISI/SAE 1018 carbon steel before and after a heat treatment at 450 °C for one hour. Tribological tests were carried out by dry sliding, using a load of 5 N and a sliding speed of 0.012 m/s, in a homemade ball-on-disk tribometer, which followed ASTM G99 standard. According to the tribological evaluation, the heat treatments applied to Ni-B coatings improved their tribological performance. This research corroborates that by applying an adequate heat treatment, hardness and wear resistance of Ni-B coatings can be improved significantly.


2017 ◽  
Vol 906 ◽  
pp. 1-7 ◽  
Author(s):  
I.V. Osetkovskiy ◽  
N.A. Kozyrev ◽  
R.E. Kryukov

In the article is shown the comparative analysis between structures of surfaced by the flux coded wire metal systems Fe-C-Si-Mn-Cr-Ni-Mo-V and Fe-C-Si-Mn-Ni-Mo-W-V. These powder wires are supposed to be used in recovering details and equipment components and machines, that works in conditions of intensive abrasive – shock wear. Manufacturing and surfacing of flux cored wires samples were made in laboratory conditions. Defined chemical composition of the surfaced metal. Deposited metal samples hardness and wear resistance were researched. In the course of deposited meta surface metallographic analysis were made following metallographic researches: defined nature and level of nonmetallic oxides impurity, type and morphology of the microstructure, grain size of surfaced samples. Estimation of the chemical composition components influence on the hardness and wear resistance were obtained.


Author(s):  
Ruixia Zhang ◽  
Xiaoning Hou ◽  
Xianfeng Zhou ◽  
Hongyu Gao ◽  
Steven Mankoci ◽  
...  

In this study, we investigated the mechanical properties of AZ31B Mg alloy before and after laser shock peening (LSP). The hardness of the AZ31B Mg alloy increased from 57 HV to 69 HV after LSP. The yield strength increased from 128 MPa to 152 MPa. Wear resistance was significantly improved after LSP. Immersion testing showed that LSP did not significantly increase the element release and weight loss in simulated body fluid. We have demonstrated that LSP is an effective way to improve the mechanical properties of the AZ31B Mg alloy.


2013 ◽  
Vol 59 (No. 1) ◽  
pp. 16-22 ◽  
Author(s):  
M. Müller ◽  
P. Hrabě

We evaluated a degree of the machine part abrasive wear with secondary focus on their hardness. The paper states laboratory results of overlay systems from their wear resistance point of view. Laboratory experiments were carried out by two-body abrasion on bonded abrasive of a P120 granularity. The results proved an increased abrasive wear resistance of martensitic, ledeburitic and stellitic overlays against eleven different original products. The overlay UTP Ledurit 60 reached the optimum values. The GD-OES (Glow Discharge Optical Emission Spectroscopy) method proved the different chemical composition of the overlay from the stated chemical composition of the overlaying electrode.    


2000 ◽  
Vol 644 ◽  
Author(s):  
A. Lindsay Greer ◽  
Wha-Nam Myung

AbstractThis paper reviews work on the wear of metallic glasses in general, as well as reporting recent results on the abrasive wear of bulk metallic glasses. The distinctive mechanical properties of metallic glasses make their wear resistance of fundamental interest. Metallic glasses, and the partially or fully crystalline materials derived from them, can have very good resistance to sliding and abrasive wear. Standard wear laws are followed, with behaviour similar to that of conventional hardened alloys. The microhardness and abrasive wear resistance are measured for four bulk metallic glasses (based on La, Mg, Pd or Zr). The hardness and wear resistance correlate well with the Young's modulus of the glass.


2007 ◽  
Vol 129 (3) ◽  
pp. 586-594 ◽  
Author(s):  
H. Yu ◽  
R. Ahmed ◽  
H. de Villiers Lovelock

This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt % composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.


Sign in / Sign up

Export Citation Format

Share Document