SIMULATION OF STATIONARY THERMAL REGIME OF OIL TRANSFORMER USING ANSYS

2021 ◽  
Vol 3 (1) ◽  
pp. 037-042
Author(s):  
V. O. KROPOTIN ◽  
◽  
S. S. GIRSHIN ◽  
V. N. GORYUNOV ◽  
E. V. PETROVA ◽  
...  

With the expansion of the electric power system, the number of distribution plants increases, the most common in which are oil-immersed transformers. the increase in the number of transformers leads to an increase in energy losses, which depend on many factors, including the temperature of the windings. at the same time, temperature is one of the most important parameters that determine the service life of a transformer. the paper discusses a digital model of the thermal regime of an oil-immersed transformer with natural cooling based on the ansys software, focused both on the tasks of calculating energy losses and on assessing the load capacity. the simulation results are compared with the heating rates. the use of thermal regime models when calculating power losses can significantly increase the accuracy of calculations.

Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 11-18
Author(s):  
Nailia Sh. Chemborisova ◽  
◽  
Ivan D. Chernenkov ◽  

The problem of selecting the electric power system control nodes is studied. By performing control of these modes, matters concerned with providing reliable power supply of the required quality to consumers can be settled in the most efficient manner. As an example, a fragment of the electric power system mathematical model used in the Finist mode-setting simulator for a power system dispatch control center operator is considered, which represents a highly branched electrical network consisting of eleven 110 kV nodes, three 220 kV nodes connected with the system, and two generator nodes. A new procedure for selecting the control nodes is proposed, which takes into account a combination of different indicators having different measurement units, dimensions and scales is proposed. These indicators characterize the following properties of power system nodes: the reactive power fraction absorbed at a node, the sensitivity of voltage to reactive load variations, the number of connected power lines, and statistical indicators characterizing the change of voltage at the nodes and reactive power flows for different options of installing the reactive power compensation devices. For combined use of these indicators, they were ranked according to the efficiency of installing reactive power compensation devices in the system. For each indicator, a scale of five ranks (intervals) is set, which determine the preferences (qualitative judgments) of the researcher in evaluating the reactive power compensation devices installation efficiency at the system nodes. The highest rank (5) corresponds to the maximum efficiency, and the lowest rank (1) corresponds to the minimum efficiency. To calculate the individual (integral) priority indicator of installing reactive power compensation devices, the ranks of indicators are added together, and their sum is divided by the product of the number of ranks by the number of the used indicators (features). Based on the calculation results, the rating (location) of each node is determined, and the nodes for installing the reactive power compensation devices are selected according to their effect on ensuring the electric power system operation reliability, active power losses in the network, and voltage regulation. Thus, a new procedure is presented for determining the integral indicators for comprehensively estimating the properties of complex electric power system nodes and selecting the controlled nodes using a system of various indicators. These indicators characterize the studied nodes in terms of the efficiency of installing reactive power compensation devices to reduce active power losses in the network, voltage regulation, and ensuring the electric power system operational reliability. The validity of the results obtained in the study is confirmed by their comparison with the indicators of the balance-conductivity method, which has proven itself in solving problems connected with determining the nodes for controlling electric power system operation modes.


2019 ◽  
Vol 6 (2) ◽  
pp. 45
Author(s):  
Bhrama Sakti K.P. ◽  
A.A. Gede Maharta Pemayun ◽  
I Gede Dyana Arjana

The disruption of the electric power system due to overcurrent causes a trip to the 3rd generator of pesanggaran power plant . This causes a decrease in frequency due to the system losing its supply. Frequency interference can be detected automatically with UFR (Under Frequency Relay). The working principle of UFR is to compare the value of the system frequency and the value of the frequency setting. The comparison will determine how much load is released to balance the generator supply. This study analyzes UFR performance at Pesanggaran Substation by simulating a case of the generator being released so as to produce a decreased system frequency state. The method used is by comparing the ETAP simulation results and calculation results. The results of the comparison obtained the system recovery time when the conditions (gen1 tripped), (gen1 and gen2 tripped), and (gen1, gen2, and gen3 tripped), each is 1.171s; 4,531s; and 4,514s.


Author(s):  
V. A. Anishchenko ◽  
I. V. Gorokhovik

During the operation of the electric power system, there is often a need to overload its individual elements (generators, power transformers, overhead and cable power lines, switching electric devices) for a period lasting from several dozens of minutes to a day. The overloads can be caused by intentional disconnection of parallel elements of the system because of scheduled preventive repairs, post-accident disconnections, as well as an unexpected increase in electricity consumption due to the impact of various factors. The overload capacity of the system elements makes it possible to increase operational reliability of power supply to consumers without additional expenditures while maintaining, in most cases, the almost normal service life of electrical equipment. Oil-filled transformers have the greatest potential overload capacity power, which makes it possible to consider them as a significant source of increasing the capacity of the transmission and distribution networks of the electric power system. Excessive over-current of power oil-filled transformers significantly reduces reliability and reduces their normal service life. This is due to the accelerated process of wear of the insulation material of the transfer windings as a result of overheating of the transformer oil, that causes structural changes and, as a consequence, to mechanical damage to the insulation of the windings; the latter can cause an electrical puncture. On the other hand, underestimation of the permissible overload of transformers might result in economic losses due to under-produced products when the functioning of the part of the transformers connected in parallel are ceased for scheduled preventive maintenance or as a result of forced emergency shutdowns. Therefore, there is a need to assess the potential of reasonable increase in the throughput capacity of the electrical network and, accordingly, the reliability of the power supply system, taking into account the requirements for the permissible loads of transformers when the electrical network and various operating modes are being designed.


2020 ◽  
Vol 11 (11) ◽  
pp. 28-37
Author(s):  
Aleksey A. SUVOROV ◽  
◽  
Alexander S. GUSEV ◽  
Mikhail V. ANDREEV ◽  
Alisher B. ASKAROV ◽  
...  

The transient stability is the main condition for reliability and survivability operation of electric power system. The transient stability analysis is an extremely complex problem. It uses the results of numerical integration of differential equations that form a mathematical model of the power system. However, the mathematical model of a large-scale power system contains a rigid nonlinear system of extremely high-order differential equations. Such system cannot be solved analytically. The simplifications and limitations are used for improving the conditionality of the power system mathematical model in time-domain simulation. It decreases the reliability and accuracy of the simulation results. In this regard, it becomes necessary to validate them. The most reliable way of validation is to compare simulation results with field data. However, it is not always possible to receive the necessary amount of field data due to many power system states and a large amount of disturbances leading to instability. The paper proposes an alternative approach for validation: using an adequate model standard instead of field data. The prototype of Hybrid Real Time Power System Simulator having the necessary properties and capabilities has been used as the reference model. The appropriate sequence of actions has been developed for validation. The adequacy of proposed approach is illustrated by the fragments of the experimental studies


2019 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ikhlas Kitta

Abstract—The Ant Colony Optimization (ACO) method is used to determine the location and optimal amount of bank capacitors in the South Sulawesi electric power system (Sulbagsel). The purpose of employing ACO is to determine the ability of ACO as one method for optimization to improve voltage levels and reduce power losses in the electric power system. There are 5 scenarios carried out in this study, scenario 4 and scenario 5 are scenarios for applying the ACO method, the results of these two scenarios are the increase in voltage on the bus and the reduction of power losses in the Sulbagsel system.  


Author(s):  
Rizky Rahmat Maulana ◽  
S Salahuddin ◽  
E Ezwarsyah ◽  
Baharuddin Ismail ◽  
Ashish Shrestha ◽  
...  

Energy loss (losses) is the loss of a certain amount of energy generated when it is distributed to consumers so that it affects the profitability of the company concerned. The size of the losses from an electric power system shows the level of efficiency of the system, the lower the percentage of losses that occur the more efficient the system. Energy losses in the distribution network are generally divided into two, namely technical and non-technical losses. The calculation of technical losses in the 20 KV medium distribution network of PT PLN (Persero) Ulp Matang Glumpang Dua is carried out using the load curve approach method and using the help of the Microsoft Exel program, while the technical losses calculated are technical losses on the Medium Voltage Network and Distribution Transformer. From the results of the analysis of the calculation of technical losses in 2020, the total technical loss value at MG-01 Matang City is in the range of 13.8% to 20.8% which consists of the average technical loss in the Medium Voltage Network feeder of 0.02%. and the loss of Distribution Transformer by 17.6%.


Author(s):  
Syafriyudin Abubakar ◽  

A reliable electric power system is needed in distributing electrical energy to customers, in the process of distributing electrical energy, interference in its distribution cannot be avoided, in general, electrical disturbances occur in underground channels, disturbance areas that are prone to and often occur usually at cable connections (Jointing). On cables that are insulated, the emergence of heat is something that must be considered. The current capacity of a cable is influenced by the characteristics of the cable components. Overheating will damage the insulation material and reduce the service life of the cable. The connection process must use the right and correct equipment and materials, to avoid insulation failure in the connection due to excessive heating on the connection which will result in a short circuit which will result in a shutdown of the electrical system. Increasing the skills of workers in the electricity sector is needed to reduce the risk of failure in the electrical system. Key words: cable jointing, insulation failure, skills


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Asdian - ◽  
Lukmanul Hakim ◽  
Endah Komalasari ◽  
Herri Gusmedi

Sistem tenaga listrik merupakan sistem interkoneksi antara pusat pembangkit, transmisi dan beban. Apabila terjadi gangguan pada salah satu sistem karena adanya beban lebih dan ketidakstabilan tegangan, akan berpengaruh ke sistem yang lain, maka perlu ada upaya untuk mencegah terjadinya gangguan tersebut. Salah satunya dengan mengetahui kemampuan pembebanan maksimum setiap beban agar kestabilan sistem dapat tetap terjaga dan dapat meminimalisir terjadinya pemadaman listrik. Penelitian ini bertujuan untuk mengidentifikasi bus-bus beban yang mendekati batas operasi yang diijinkan berdasarkan nilai λ dalam sistem interkoneksi Sumatera Bagian Selatan (Sumbagsel). Simulasi dilakukan dengan menggunakan Predictor - Corrector Method Continuation Power Flow untuk mendapatkan nilai λ dalam sistem tersebut. Dari hasil simulasi yang dilakukan, diperoleh nilai titik operasi dan titik jatuh dalam setiap beban sistem.Kata kunci : kemampuan pembebanan maksimum, bus-bus beban, titik jatuh An electric power system interconnection system is among a plant, transmission and load. In the event of disruption in one system due to overload and voltage instability, will affect other systems, it is necessary to attempt to prevent the occurrence of such disorders, one of them by knowing the maximum loadability of each load for voltage stability and minimalize cut off an electric. This study aimed to identify the load buses are approaching the limit of allowable operations based on the value of λ in the system interconnection South of Sumatera (Sumbagsel). Simulation is done using Predictor - Corrector Method Continuation Power Flow to obtain the value of λ in the system. From the simulation results, the value of the operating point and point load falls within any system. Keywords : maximum loadability, load buses, point load falls 1. PENDAHULUAN Pada saat ini, kebanyakan sistem tenaga listrik sudah merupakan sistem interkoneksi antara satu pusat pembangkit dengan pembangkit lainnya dengan harapan apabila salah satu dari pusat pembangkit atau saluran transmisi mengalami gangguan maka pasokan tenaga listrik tetap dapat berjalan. Di sisi lain, interkoneksi sistem tenaga listrik juga mempunyai beberapa kelemahan. Salah satu kelemahannya adalah apabila terjadi gangguan pada salah satu sistem karena adanya beban lebih dan ketidakstabilan tegangan, akan berpengaruh ke sistem yang lain. Gangguan yang pada awalnya bersifat sementara dan terjadi pada bagian si


2019 ◽  
Vol 124 ◽  
pp. 02015
Author(s):  
A.N. Alyunov ◽  
O.S. Vyatkina ◽  
I.G. Akhmetova ◽  
R.D. Pentiuc ◽  
K.E. Sakipov

The article presents measure to optimize the operating modes of power transformers in order to minimize losses of electrical energy. The influence of actual voltage and service life of power transformers on electric power losses is shown. It was proposed to determine the economic capacity of power transformers taking into account the indicated factors, as well as taking into account the time of transformer switching on into the electric network and the form of the load schedule.


Sign in / Sign up

Export Citation Format

Share Document