scholarly journals Analysis of Technical Loss Calculation Using Load Curve Approach on 20 kV Distribution Network

Author(s):  
Rizky Rahmat Maulana ◽  
S Salahuddin ◽  
E Ezwarsyah ◽  
Baharuddin Ismail ◽  
Ashish Shrestha ◽  
...  

Energy loss (losses) is the loss of a certain amount of energy generated when it is distributed to consumers so that it affects the profitability of the company concerned. The size of the losses from an electric power system shows the level of efficiency of the system, the lower the percentage of losses that occur the more efficient the system. Energy losses in the distribution network are generally divided into two, namely technical and non-technical losses. The calculation of technical losses in the 20 KV medium distribution network of PT PLN (Persero) Ulp Matang Glumpang Dua is carried out using the load curve approach method and using the help of the Microsoft Exel program, while the technical losses calculated are technical losses on the Medium Voltage Network and Distribution Transformer. From the results of the analysis of the calculation of technical losses in 2020, the total technical loss value at MG-01 Matang City is in the range of 13.8% to 20.8% which consists of the average technical loss in the Medium Voltage Network feeder of 0.02%. and the loss of Distribution Transformer by 17.6%.

2019 ◽  
Vol 84 ◽  
pp. 02002
Author(s):  
Waldemar Dolega

In this paper, an analysis of issues related to development of national electric power network infrastructure in aspect of electric energy security is performed. Profile of network infrastructure in area of transmission and distribution is performed. Threats for electric energy supply security connected with transmission and distribution infrastructure are discussed. Both transmission and distribution electric power network are adapted for presently occurred typical conditions of electric energy demand and realization of internal tasks in normal conditions, but can create potential threat for electric energy supply security. In the context of forecasted increase of electric energy demand, inadequate power in National Electric Power System (NEPS) in domestic sources and available through intersystem connections, uneven location of sources and consumers at shortage of proper network transmission capacities, necessity of improvement of quality and electric energy supply reliability to final consumers and intensive development of renewable energy sources, present network infrastructure in area of transmission and distribution will be insufficient. Development of 400 and 220 kV transmission network, 110 kV distribution network especially in area of cities, MV distribution network especially in rural areas and realization of investments for improvement of export-import possibilities of NEPS will be necessary. Challenges for transmission and distribution system operators in area of network development are performed. They concern mainly investment sphere and area connected with preparation and construction of network investments.


2013 ◽  
Vol 811 ◽  
pp. 631-634
Author(s):  
Xue Song Zhou ◽  
Zhao Hao Hou ◽  
You Jie Ma

This paper proposes a general overview of distribution network automation technology. With the continuous development of society and economy, the distribution network automation has become the trend and developing direction of electric power system. As the end part of the electric power system, the distribution network is directly connected to the consumers and plays a vital role in improving the quality and reliability of power supply. In order to provide reference for improving the reliability of distribution network and to speed up the development of distribution network automation, this paper analyses the system structure, development status and trend of distribution network automation technology.


2013 ◽  
Vol 756-759 ◽  
pp. 2936-2939
Author(s):  
Xiao Ming Wang ◽  
Li Zhang

At present commonly used distribution network loss calculation theory method, the not fully consider load curve changes. Thus, the theory energy loss too small, and the management energy loss too large. On this issue, the article puts forward an improved Newtons method for distribution network theory energy loss calculation. According to the current transformer substation of 24h a distribution network power records, the trend of the model results show that the total distribution network energy loss. The experimental results show that, compared with traditional methods, improved Newtons method to calculate the result more close to the energy loss calculation theory statistical energy loss.


2019 ◽  
Vol 4 (6) ◽  
pp. 41-49 ◽  
Author(s):  
Aniagboso John Onah

Overcurrent protection is protection against excessive currents or current beyond the acceptable current rating of equipment. It generally operates instantly. Short circuit is a type of overcurrent. Magnetic circuit breakers, fuses and overcurrent relays are commonly used to provide overcurrent protection. There is always a need to protect expensive power equipment. Protective relaying is a very important part of any electric power system that comes into play during trouble, fault or abnormal condition. The purpose is to isolate unhealthy part of electrical power system while the rest continue their normal operation. The entire electric power system from source to load centers is exposed and subject to natural hazards. The effects of these hazards are capable of interrupting normal operations of the system. Since these hazards cannot be prevented, precautions are taken to minimize or eliminate their effect on the system. The relay is a basic component of any protection scheme. The information (or signals) received from the power system actuates the relay, when necessary, to perform one or more switching actions. The signals are proportional to the magnitudes and phase angles of power system voltages and currents. When the relay receives these signals, it decides to close (or open) one or more sets of normally open (or closed) contacts, and consequently, the trip coil of a circuit breaker will be energized to open the power circuit. This paper investigates over-current relay protection scheme applied to medium-voltage electrical network. Methods of current and time grading have been applied in the coordination of the overcurrent relays in a radial network. Different time/current characteristics of relays such as the normal inverse (NI), very inverse (VI), and extreme inverse (EI) have been examined in order to obtain optimum discrimination.


2021 ◽  
Vol 3 (1) ◽  
pp. 037-042
Author(s):  
V. O. KROPOTIN ◽  
◽  
S. S. GIRSHIN ◽  
V. N. GORYUNOV ◽  
E. V. PETROVA ◽  
...  

With the expansion of the electric power system, the number of distribution plants increases, the most common in which are oil-immersed transformers. the increase in the number of transformers leads to an increase in energy losses, which depend on many factors, including the temperature of the windings. at the same time, temperature is one of the most important parameters that determine the service life of a transformer. the paper discusses a digital model of the thermal regime of an oil-immersed transformer with natural cooling based on the ansys software, focused both on the tasks of calculating energy losses and on assessing the load capacity. the simulation results are compared with the heating rates. the use of thermal regime models when calculating power losses can significantly increase the accuracy of calculations.


2016 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Hamid Shahbandarzadeh ◽  
Gholamreza Jamali ◽  
Seyedeh FatemehYahosseini

From its generation to utilization, some of the electrical energy gets wasted in the process. This loss of energy occurs due to various reasons, one of which is energy loss in distribution networks. Considering the high cost of power generation, it is important to identify factors causing this loss. This study was carried out with the objective of identifying energy loss factors and the importance of each factor. Lack of identification for factors stealing energy, network deterioration, amount of electrical load and the impact of such factors that can have significant influence on energy loss could diverge the path of energy management. Thus, the main objective of this study was to reduce energy loss and its additional costs by developing the concept of identifying influential factors and measuring the effect of each factor especially in different regions. The statistical population of this study comprised of power and energy experts and university professors. The statistical sample included 12 energy experts and their opinions were collected using questionnaires and paired comparisons. Weights of criteria were determined using SWARA technique. COPRAS-G technique was used for measuring the importance of criteria for Bushehr province distribution networks. The importance of criteria are: energy theft, measurement error, amount of load, network deterioration, loose fittings, improper placement of equipment, the amount of voltage, conductor resistance, equipment casualty, location and size of the capacitor, geographical conditions, Size and dimensions of the conductor, leakage, and network arrangements respectively. Distribution network of Assaluyeh region had the highest energy losses.


2014 ◽  
Vol 18 (1) ◽  
pp. 16
Author(s):  
Ruri Diana Putranti ◽  
Iman Setiono

Ruri Diana Putranti, Iman Setiono, in paper calculation of energy losses of Tambak Lorok - 03 feeder as one of the pilot project program REVASS (revenue assurance) in energy reconciliation program of PT . PLN (persero) semarang area explain that in an electric power system there is a factor called the loss factor or energy depletion . This shrinkage can be found in various places on the electricity network , from generation, transmission and distribution of both to consumers . The release of energy or commonly referred to as shrinkage , the harm to the company for commercial and service in large and small quantities . Pond feeder Lorok - 03 is one of the feeders are thought to have a large enough energy depletion . This feeder is in the working area of ​​PT . PLN Rayon East Semarang and is a feeder into the pilot established REVASS ( Revenue Assurance ) PT . PLN Semarang area . Based on mathematical calculations that have been carried out in February 2013 the amount of power loss in the feeder is 2,316,319 KWH , while in the month of March 2013 is 4,765,637 KWH and in April 2013 amounted to 18,809,238 KWH . The amount of power loss raises the average monthly percentage losses in the feeder that is between 10-20 % . This of course lead to a loss for the company , especially on the commercial side that is the size of the company to the customer's receivables . Therefore , a program in which reconciliation is REVASS this project , is one attempt to get the suitability amount of energy from the power sent to the power received at the customer . Keywords : Electric Power System , Network Distribution , Energy Losses , Reconciliation of Energy


Sign in / Sign up

Export Citation Format

Share Document