scholarly journals Time-course Pattern of Carrot Storage Root Growth in a Solid Substrate, Sub-irrigation Culture System

2011 ◽  
Vol 49 (4) ◽  
pp. 177-183
Author(s):  
Toshihiko EGUCHI ◽  
Takehiko SUZUKI ◽  
Satoshi YOSHIDA ◽  
Ikuo MIYAJIMA ◽  
Masaharu KITANO
Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Michael Gomez Selvaraj ◽  
Maria Elker Montoya-P ◽  
John Atanbori ◽  
Andrew P. French ◽  
Tony Pridmore

Abstract Background Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development. Results We explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits. Conclusions The aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.


Biologia ◽  
2006 ◽  
Vol 61 (1) ◽  
Author(s):  
Ján Pavlovkin ◽  
Miroslava Luxová ◽  
Ingrid Mistríková ◽  
Igor Mistrík

AbstractIn this study, the effects of Cd on root growth, respiration, and transmembrane electric potential (E m) of the outer cortical cells in maize roots treated with various Cd concentrations (from 1 µM to 1 mM) for several hours to one week were studied. The E m values of root cells ranged between −120 and −140 mV and after addition of Cd they were depolarized immediately. The depolarization was concentration-dependent reaching the value of diffusion potential (E D) when the Cd concentration exceeded 100 µM. The values of E D ranged between −65 to −68 mV (−66 ± 1.42 mV). The maximum depolarization of E m was registered approx. 2.5 h after addition of Cd to the perfusion solution and in some cases, partial (Cd > 100 µM) or complete repolarization (Cd < 100 µM) was observed within 8–10 h of Cd treatment. In the time-dependent experiments (0 to 168 h) shortly after the maximum repolarization of E m a continuous concentration-dependent decrease of E m followed at all Cd concentrations. Depolarization of E m was accompanied by both increased electrolyte leakage and inhibition of respiration, especially in the range of 50 µM to 1 mM Cd, with the exception of root cells treated with 1 and 10 µM Cd for 24 and 48 h. Time course analysis of Cd impact on root respiration revealed that at higher Cd concentrations (> 50 µM) the respiration gradually declined (∼ 6 h) and then remained at this lowest level for up to 24 h.All the Cd concentrations used in this experiment induced significant inhibition of root elongation and concentrations higher than 100 µM stopped the root growth within the first day of Cd treatment. Our results suggest that Cd does not cause irreversible changes in the electrogenic plasma membrane H+ ATPase because fusicoccin, an H+ ATPase activator diminished the depolarizing effect of Cd on the E m. The depolarization of E m in the outer cortical cells of maize roots was the result of a cumulative effect of Cd on ATP supply, plasmalemma permeability, and activity of H+ ATPase.


2020 ◽  
Vol 30 (15) ◽  
pp. R880-R883
Author(s):  
Tiina Blomster ◽  
Ari Pekka Mähönen

1991 ◽  
Vol 112 (3) ◽  
pp. 501-513 ◽  
Author(s):  
L C Gerstenfeld ◽  
W J Landis

Conditions were defined for promoting cell growth, hypertrophy, and extracellular matrix mineralization of a culture system derived from embryonic chick vertebral chondrocytes. Ascorbic acid supplementation by itself led to the hypertrophic phenotype as assessed by respective 10- and 15-fold increases in alkaline phosphatase enzyme activity and type X synthesis. Maximal extracellular matrix mineralization was obtained, however, when cultures were grown in a nutrient-enriched medium supplemented with both ascorbic acid and 20 mM beta-glycerophosphate. Temporal studies over a 3-wk period showed a 3-4-fold increase in DNA accompanied by a nearly constant DNA to protein ratio. In this period, total collagen increased from 3 to 20% of the cell layer protein; total calcium and phosphorus contents increased 15-20-fold. Proteoglycan synthesis was maximal until day 12 but thereafter showed a fourfold decrease. In contrast, total collagen synthesis showed a greater than 10-fold increase until day 18, a result suggesting that collagen synthesis was replacing proteoglycan synthesis during cellular hypertrophy. Separate analysis of individual collagen types demonstrated a low level of type I collagen synthesis throughout the 21-d time course. Collagen types II and X synthesis increased during the first 2 wk of culture; thereafter, collagen type II synthesis decreased while collagen type X synthesis continued to rise. Type IX synthesis remained at undetectable levels throughout the time course. The levels of collagen types I, II, IX, and X mRNA and the large proteoglycan core protein mRNA paralleled their levels of synthesis, data indicating pretranslational control of synthesis. Ultrastructural examination revealed cellular and extracellular morphology similar to that for a developing hypertrophic phenotype in vivo. Chondrocytes in lacunae were surrounded by a well-formed extracellular matrix of randomly distributed collagen type II fibrils (approximately 20-nm diam) and extensive proteoglycan. Numerous vesicular structures could be detected. Cultures mineralized reproducibly and crystals were located in extracellular matrices, principally associated with collagen fibrils. There was no clear evidence of mineral association with extracellular vesicles. The mineral was composed of calcium and phosphorus on electron probe microanalysis and was identified as a very poorly crystalline hydroxyapatite on electron diffraction. In summary, these data suggest that this culture system consists of chondrocytes which undergo differentiation in vitro as assessed by their elevated levels of alkaline phosphatase and type X collagen and their ultrastructural appearance.(ABSTRACT TRUNCATED AT 400 WORDS)


1984 ◽  
Vol 2 (4) ◽  
pp. 371-380 ◽  
Author(s):  
D. J. Hosford ◽  
J. R. Lenton ◽  
G. F. J. Milford ◽  
T. O. Pocock ◽  
M. C. Elliott

HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 764-766 ◽  
Author(s):  
Sonja L. Maki ◽  
Maria Delgado ◽  
Jeffrey W. Adelberg

The gibberellin biosynthesis inhibitor, ancymidol, was used during micropropagation of Hosta `Blue Vision'. Shoot growth and bud division was monitored every 2 weeks over an 8-week period in media containing 1 μm benzyladenine (BA) and various levels of ancymidol (0, 0.1, 0.32, 1 and 3.2 μm). Ancymidol prolonged bud division from 2 to 6 weeks and increased the total number of buds produced. Shoots grown in medium containing ancymidol had greater fresh weight, shorter-broader leaves and less dry weight than those grown without ancymidol. Reduced dry weight of buds grown in the presence of ancymidol was correlated to the depletion of sugars in the medium. A bioassay using `Saturn' tall rice revealed that ancymidol was active for the entire 8-week culture period.


Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 259
Author(s):  
Porntip Chiewchankaset ◽  
Saowalak Kalapanulak ◽  
Treenut Saithong

The constraint-based rMeCBM-KU50 model of cassava storage root growth was analyzed to evaluate its sensitivity, with respect to reaction flux distribution and storage root growth rate, to changes in model inputted data and constraints, including sucrose uptake rate-related data—photosynthetic rate, total leaf area, total photosynthetic rate, storage root dry weight, and biomass function-related data. These mainly varied within ±90% of the model default values, although exceptions were made for the carbohydrate (−90% to 8%) and starch (−90% to 9%) contents. The results indicated that the predicted storage root growth rate was highly affected by specific sucrose uptake rates through the total photosynthetic rate and storage root dry weight variations; whereas the carbon flux distribution, direction and partitioning inclusive, was more sensitive to the variation in biomass content, particularly the carbohydrate content. This study showed that the specific sucrose uptake rate based on the total photosynthetic rate, storage root dry weight, and carbohydrate content were critical to the constraint-based metabolic modeling and deepened our understanding of the input–output relationship—specifically regarding the rMeCBM-KU50 model—providing a valuable platform for the modeling of plant metabolic systems, especially long-growing crops.


Sign in / Sign up

Export Citation Format

Share Document