root growth rate
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 0)

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2058
Author(s):  
Iván P. Ordóñez ◽  
Ignacio F. López ◽  
Peter D. Kemp ◽  
Daniel J. Donaghy ◽  
Yongmei Zhang ◽  
...  

The increase in drought events due to climate change have enhanced the relevance of species with greater tolerance or avoidance traits to water restriction periods, such as Bromus valdivianus Phil. (B. valdivianus). In southern Chile, B. valdivianus and Lolium perenne L. (L. perenne) coexist; however, the pasture defoliation criterion is based on the physiological growth and development of L. perenne. It is hypothesised that B. valdivianus needs a lower defoliation frequency than L. perenne to enhance its regrowth and energy reserves. Defoliation frequencies tested were based on B. valdivianus leaf stage 2 (LS-2), leaf stage 3 (LS-3), leaf stage 4 (LS-4) and leaf stage 5 (LS-5). The leaf stage development of Lolium perenne was monitored and contrasted with that of B. valdivianus. The study was conducted in a glasshouse and used a randomised complete block design. For Bromus valdivianus, the lamina length, photosynthetic rate, stomatal conductance, tiller number per plant, leaf area, leaf weights, root growth rate, water-soluble carbohydrates (WSCs) and starch were evaluated. Bromus valdivianus maintained six live leaves with three leaves growing simultaneously. When an individual tiller started developing its seventh leaf, senescence began for the second leaf (the first relevant leaf for photosynthesis). Plant herbage mass, the root growth rate and tiller growth were maximised at LS-4 onwards. The highest leaf elongation rate, evaluated through the slope of the lamina elongation curve of a fully expanded leaf, was verified at LS-4. The water-soluble carbohydrates (WSCs) increased at LS-5; however, no statistical differences were found in LS-4. The LS-3 and LS-2 treatments showed a detrimental effect on WSCs and regrowth. The leaf photosynthetic rate and stomatal conductance diminished while the leaf age increased. In conclusion, B. valdivianus is a ‘six-leaf’ species with leaf senescence beginning at LS-4.25. Defoliation at LS-4 and LS-5 was optimum for plant regrowth, maximising the aboveground plant parameters and total WSC accumulation. The LS-4 for B. valdivianus was equivalent to LS-3.5 for L. perenne. No differences related to tiller population in B. valdivianus were found in the different defoliation frequencies.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150030
Author(s):  
Tyler Levasseur ◽  
Antonio Palacios

A feedforward network is a unidirectionally coupled chain of dynamical systems in which the first cell is coupled to itself, and each successive cell is coupled to the next one. Feedforward networks have gained considerable interest because of their potential to enhance signal amplification and to manipulate the frequency of oscillations. Indeed, it has been shown that the growth rate of the bifurcation undergone by the final cell is much larger than the expected square root growth rate associated with the standard Hopf bifurcation. In this paper, we present a new approach to studying this growth rate phenomenon. We employ a two-time-scale analysis and asymptotic approximations to detect behavior associated with the growth rate phenomenon that has not been previously observed. In particular, we show that the Hopf bifurcation is not the only bifurcation capable of exhibiting this large growth rate behavior. Using asymptotic methods we show that it is not a special property of the Hopf bifurcation that allows for this accelerated growth rate; it is a combination of the unidirectional coupling and the higher-degree nonlinearities that cause this effect. Furthermore, we show that this large growth rate need not persist away from the bifurcation. In fact, the growth rate is asymptotic to the standard square root growth rate as the bifurcation parameter increases.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
L Dux-Santoy ◽  
G Teixido-Tura ◽  
A Ruiz-Munoz ◽  
L La Mura ◽  
F Valente ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public Institution(s). Main funding source(s): Spanish Ministry of Science, Innovation and Universities Instituto de Salud Carlos III Background. Dilation of the aortic root is a key feature of Marfan syndrome and it is related to the occurrence of aortic events and death. On top of maximum diameter, rapid annual growth rate is suggested by guidelines for indication of aortic root replacement. Current gold-standard for aortic root diameter assessment is manual quantification on multiplanar reformatted 3D computed tomography (CT) or magnetic resonance angiogram. However, inter- and intra-observer reproducibility are limited and different measurement methods, i.e. cusp-to-cusp and cusp-to-commissure, may be used in different clinical centres, leading to difficulties in the clinical assessment of progressive dilation. Purpose. We aimed to test whether aortic root growth rate during follow-up can be reliably quantified by semi-automatic co-registration of two CT angiograms. Methods. Seven Marfan syndrome patients, free from previous aortic surgery, with a total of 11 pairs of CT were identified. Manual assessment of six aortic root diameters (right-non coronary -RN- , right-left -RL- and left-non coronary -LN- cusp-to-cusp and R, L and N cusp-to-commissure) was obtained from all CTs by an experienced researcher blind to semi-automatic results. The thoracic aorta and the outflow tract were semi-automatically segmented in the baseline CT and commissure and cusps were manually located. A 10 mm-thick region of interest containing the aortic wall was automatically generated from segmentation boundary. Co-registration was obtained with three, fully-automatic steps. Firstly, baseline and follow-up CT scans were aligned by means of a rigid registration. Then, scans were co-registered with multi-resolution affine followed by b-spline non-rigid registrations based on mutual information metric. The transformation pertaining to the location of baseline commissure and cusps points was used to locate the same points in the follow-up scan (Fig. 1 top). Results. Follow-up duration was 35 ± 22 (range 12-70.3) months. Automatic quantification of diameter growth during the follow-up was obtained in 62 out of 66 (94%) diameter comparisons. High Pearson correlation coefficients (R) and ICC were found between manual and semi-automatic assessment of growth rate, both for cusp-to-cusp and cusp-to-commissure diameters: R = 0.727 and ICC = 0.678 for RN; R = 0.822 and ICC = 0.602 for RL; R = 0.648 and ICC = 0.668 for LN; R = 0.726 and ICC = 0.711 for R; R = 0.911 and ICC = 0.895 for L and R = 0.553 and ICC = 0.482 for N. Scatter and Bland-Altman plots for all growth rates (Fig. 1) confirmed very good correlation (R = 0.810) but a slight tendency (R=-0.270) for underestimation at high growth rate.  No correlation was found between follow-up duration and difference between techniques (R = 0.06). Conclusions. Semi-automatic quantification of aortic root growth rate by co-registration of pairs of CT angiograms is feasible for follow-up as short as one year. Larger studies are needed to confirm these preliminary data. Abstract Figure. CT measurements. Automatic vs manual.


2020 ◽  
Author(s):  
Tino Colombi ◽  
Hanna Sjulgård ◽  
Daniel Iseskog ◽  
Thomas Keller

<p>Physical properties of soil such as penetration resistance and oxygen concentration of soil air strongly influence root system development in plants. Soils typically exhibit considerable spatial and temporal fluctuations in penetration resistance and oxygen concentration of soil air due to wetting-drying cycles, small-scale differences in soil compactness or hotspots of biological activity. Hence, roots of a single plant are exposed to different physical environments and thus physical stresses during their growth through the soil profile. Plants are known to adjust their root development to these spatiotemporal fluctuations in soil physical conditions. Such phenotypic adjustments include changes of root growth rate as well as alterations of root morphology and anatomy. However, these adjustments reduce accessibility of water and nutrients and may increase the carbon demand for soil exploration, which limits aboveground plant development. Until now, it is unclear whether such adjustments in root development are plastic (i.e. the phenotype is irreversibly changed even when roots re-enter zones with optimal growth conditions) or elastic (i.e. the phenotype is only temporarily changed and recovers again when roots re-enter zones with optimal growth conditions).</p><p>To investigate the plasticity and elasticity of root development, we designed customized microrhizotrons in which soil penetration resistance and the concentration of oxygen in soil air can be varied. Near-infrared (λ=830 nm) time-lapse imaging was applied to quantify root growth rates, and combined with measurements of root morphology and anatomy. A series of experiments was conducted using different crop species with contrasting root system properties (fibrous vs. taproot system, thin vs. thick roots). After an establishment period of three days under optimal growth conditions, roots were exposed for 24 hours to increased penetration resistance, hypoxia and the combination of both stresses. Following this, the stress was released, and plants continued to grow for 24 hours at optimal conditions, before a second stress was applied for another 24 hours. Generally, root development responded to changes in soil physical conditions across all species. However, depending on the species, the adjustments in root development were found to be constant or temporary, i.e. plastic or elastic. This difference between species was particularly pronounced for root growth rate. Root growth rate in pea recovered after soil physical stress was released, while root growth rate in wheat remained low after stress release. The obtained findings will be discussed with respect to the tolerance of different plants to soil physical stress as well as the effects of root growth on soil structure dynamics.</p>


Author(s):  
Everton T. M. Ichikawa ◽  
Adalton M. Fernandes ◽  
Lydia Helena da S. de O. Mota

ABSTRACT The objective of this study was to evaluate the rooting and growth of sweet potato seedlings in trays in response to substrate supplementation with calcium (Ca) and phosphorus (P). Two greenhouse experiments were conducted in a randomized block design with a split plot scheme and eight repetitions. In the Ca experiment, the plots were the doses of 0, 100 and 200 mg kg-1 of Ca, and in the P experiment, by the doses of 0, 150 and 300 mg kg-1 of P. In both experiments, the subplots corresponded to the sampling time of seedlings (15, 30, 45, 60 and 75 days after planting). The Ca present in the substrate was sufficient to promote the proper rooting and growth of sweet potato seedlings in the trays. The Ca supply in excess (200 mg kg-1) adversely affected the growth of seedlings that remained in the tray for more than 60 days. Although the seedlings supplied with P showed higher root growth rate after 45 days, the initial P available in the substrate was sufficient to promote the adequate growth of the seedlings in the trays until 60 days.


Open Heart ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. e001095
Author(s):  
Froso Sophocleous ◽  
Bostjan Berlot ◽  
Maria Victoria Ordonez ◽  
Mai Baquedano ◽  
Elena Giulia Milano ◽  
...  

ObjectivesThis study aimed to identify determinants of aortic growth rate in bicuspid aortic valve (BAV) patients. We hypothesised that (1) BAV patients with repaired coarctation (CoA) exhibit decreased aortic growth rate, (2) moderate/severe re-coarctation (reCoA) results in increased growth rate, (3) patients with right non-coronary (RN) valve cusps fusion pattern exhibit increased aortic growth rate compared with right-left cusps fusion and type 0 valves.MethodsStarting from n=521 BAV patients with cardiovascular magnetic resonance data, we identified n=145 patients with at least two scans for aortic growth analysis. Indexed areas of the sinuses of Valsalva and ascending aorta (AAo) were calculated from cine images in end-systole and end-diastole. Patients were classified based on dilation phenotype, presence of CoA, aortic valve function and BAV morphotype. Comparisons between groups were performed. Linear regression was carried out to identify associations between risk factors and aortic growth rate.ResultsPatients (39±16 years of age, 68% male) had scans 3.7±1.8 years apart; 32 presented with AAo dilation, 18 with aortic root dilation and 32 were overall dilated. Patients with repaired CoA (n=61) showed decreased aortic root growth rate compared with patients without CoA (p≤0.03) regardless of sex or age. ReCoA, aortic stenosis, regurgitation and history of hypertension were not associated with growth rate. RN fusion pattern showed the highest aortic root growth rate and type 0 the smallest (0.30 vs 0.08 cm2/m*year, end-systole, p=0.03).ConclusionsPresence of CoA and cusp fusion morphotype were associated with changes in rate of root dilation in our BAV population.


2019 ◽  
Vol 50 (5) ◽  
pp. 257-260
Author(s):  
N. V. Zhukovskaya ◽  
E. I. Bystrova ◽  
N. F. Lunkova ◽  
V. B. Ivanov

Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 259
Author(s):  
Porntip Chiewchankaset ◽  
Saowalak Kalapanulak ◽  
Treenut Saithong

The constraint-based rMeCBM-KU50 model of cassava storage root growth was analyzed to evaluate its sensitivity, with respect to reaction flux distribution and storage root growth rate, to changes in model inputted data and constraints, including sucrose uptake rate-related data—photosynthetic rate, total leaf area, total photosynthetic rate, storage root dry weight, and biomass function-related data. These mainly varied within ±90% of the model default values, although exceptions were made for the carbohydrate (−90% to 8%) and starch (−90% to 9%) contents. The results indicated that the predicted storage root growth rate was highly affected by specific sucrose uptake rates through the total photosynthetic rate and storage root dry weight variations; whereas the carbon flux distribution, direction and partitioning inclusive, was more sensitive to the variation in biomass content, particularly the carbohydrate content. This study showed that the specific sucrose uptake rate based on the total photosynthetic rate, storage root dry weight, and carbohydrate content were critical to the constraint-based metabolic modeling and deepened our understanding of the input–output relationship—specifically regarding the rMeCBM-KU50 model—providing a valuable platform for the modeling of plant metabolic systems, especially long-growing crops.


2018 ◽  
Vol 69 (21) ◽  
pp. 5157-5168 ◽  
Author(s):  
Chvan Youssef ◽  
François Bizet ◽  
Renaud Bastien ◽  
David Legland ◽  
Marie-Béatrice Bogeat-Triboulot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document