Effects of fish meal and sodium bentonite on daily gain, wool growth, carcass characteristics, and ruminal and blood characteristics of lambs fed concentrate diets.

1998 ◽  
Vol 76 (8) ◽  
pp. 2025 ◽  
Author(s):  
L S Walz ◽  
T W White ◽  
J M Fernandez ◽  
L R Gentry ◽  
D C Blouin ◽  
...  
2012 ◽  
Vol 15 (2) ◽  
pp. 379-386
Author(s):  
E. Grela ◽  
J. Matras ◽  
R. Pisarski ◽  
S. Sobolewska

The effect of supplementing organic diets with fish meal and premix on the performance of pigs and some meat and blood characteristicsThe aim of this study was to determine the effect of fish meal and mineral-vitamin premix, supplementing organic diets, on the performance of pigs and some meat and blood characteristics. The experiment was conducted on an organic pig fattening farm. The study involved 120 pigs with an approximate 25 kg body weight. Animals were divided into 3 groups, kept in pens, 10 animals each. Group I (control) animals were fed with plant feedstuffs of organic origin. Diets for group II and III were enriched with fish meal or fish meal and vitamin-mineral premix, respectively. The experiment was carried out till pigs reached a weight of 115 kg. Feed samples were subjected to laboratory analyses. Body weight (3 times) and feed intake were recorded. Blood samples were collected (2 times) to determine hematological and biochemical indices. Some parameters in meat samples were also determined. The fish meal addition improved (P ≤ 0.05) the average daily gains as well as feed conversion ratio during fattening period and mineral-vitamin premix significantly (P ≤ 0.05) fortified fish meal influence. Fish meal supplement improved (P ≤ 0.05) also some carcass characteristics. Supplementation of the diet with premix additionally decreased (P ≤ 0.05) backfat thickness and increased share of meat in carcass. Fish meal improved (P ≤ 0.05) some meat characteristics and elevated content of some polyunsaturated fatty acids. An increase in hemoglobin, red blood cell, white blood cell and cholesterol level in blood of animals from both experimental groups were also found. The results obtained proved the usefulness of fish meal and mineral-vitamin premix in the fatteners nutrition based on organic diets.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 160-160
Author(s):  
John Wagner ◽  
William T Nelson ◽  
Terry Engle ◽  
Jerry Spears ◽  
Jeff Heldt ◽  
...  

Abstract Four hundred and thirty-two beef steers (346.3 ± 63.7 kg BW) were used to determine the effects of Zn source on feedlot cattle fed ractopamine hydrochloride. Cattle were blocked in groups of 54 by BW and housed in 48 pens containing 9 steers per pen. Pens within a weight block were randomly assigned to treatments in a 2 x 3 factorial arrangement, with factors being: 1) 0 or 30.1 mg of ractopamine HCl/kg DM fed during the final 29 days on feed; and 2) Zn source: 90 mg of supplemental Zn/kg DM from ZnSO4; Zn sulfate (67%) + Zn methionine (33%); and Zn from Zn hydroxychloride, fed through the entire feeding period. Cattle were fed a high concentrate finishing diet for 154 d and slaughtered at a commercial abattoir. Average daily gain, DMI, feed efficiency and carcass characteristics were determined after slaughter. Zinc source had no impact on live animal performance. Cattle fed ractopamine HCl had greater (P < 0.01) final BW, greater (P < 0.001) ADG, improved (P < 0.001) G:F, heavier (P < 0.01) HCW, and larger (P < 0.05) longissimus muscle compared to non-ractopamine supplemented steers. There was a Zn source by ractopamine interaction (P < 0.01) for dressing percentage. Cattle receiving ractopamine HCl with Zn hydroxychloride had a greater dressing percentage (P < 0.05) when compared to ractopamine HCl cattle fed other Zn sources. Cattle receiving ractopamine HCl with Zn sulfate had a lesser dressing percentage (P < 0.05) when compared to ractopamine HCl cattle fed other Zn sources. Additional Zn source by ractopamine HCl interactions were not significant. These data indicate that Zn source has minimal impacts on feedlot steer performance and carcass characteristics when supplemented to cattle receiving 0.0 or 30.1 mg of ractopamine HCl/kg DM.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Pedro H V Carvalho ◽  
Mariana F Westphalen ◽  
Jonathan A Campbell ◽  
Tara L Felix

Abstract The objectives of the study were to determine the effect of coated or noncoated hormone implants on growth performance, carcass characteristics, and serum estradiol-17β (E2) concentrations of Holstein steers fed a grain-based diet for 112 d. Seventy-nine Holstein steers [average initial body weight (BW) = 452 ± 5.5 kg] were stratified by BW and allotted to one of two treatments: 1) Holstein steers implanted with a coated implant containing 200 mg of trenbolone acetate (TBA) and 40 mg E2 (Revalor-XS (Merck Animal Health; Summit, NJ)] on day 0 (XS) or 2) Holstein steers implanted two times (days 0 and 56) with a noncoated implant containing 80 mg of TBA and 16 mg of E2 [(2IS) Revalor-IS (Merck Animal Health)]. Data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC). There was no effect (P ≥ 0.71) of implant strategy on initial, middle, and final BW. No effect (P ≥ 0.12) of implant strategy was observed on average daily gain, dry matter intake, or gain-to-feed ratio. There were no effects (P ≥ 0.11) of implant strategy on carcass characteristics. There was an implant × day interaction (P < 0.01) for the circulation of serum E2 concentrations. Serum E2 concentration increased similarly 14 d after Holstein steers were implanted, regardless of implant strategy. At 28 d, after steers were implanted, steers in the XS group had less serum E2 concentration than Holstein steers in the 2IS group. However, at 56 d after the first implantation, both groups, once again, had similar serum E2 concentrations and E2 concentrations were less on day 56 than day 28 for both strategies. Holstein steers implanted with 2IS had greater serum E2 concentration on day 70 and E2 concentrations remained greater than serum E2 of Holstein steers implanted XS for the duration of the trial (day 112). In summary, there was no effect of coated or two doses of noncoated implant on growth performance or carcass characteristics of Holstein steers.


2022 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Belal S. Obeidat

A study was conducted to examine how lupin grains (LUPs) feeding affected nutritional intake, digestibility, growth, and carcass characteristics in kids. A total of 24 growing black kids (initial body weight (BW) = 16.4 ± 0.49 kg) were allocated to one of three diets at random. Lupin was included in the diet at a rate of 0 (control; CON), 100 (LUP100), or 200 g/kg (LUP200) of total dry matter (DM). The trial lasted for 91 days divided into 7 and 84 days to be used for adaptation and data collection, respectively. Feed intake was evaluated daily throughout the study. At the commencement and the end of the study, each kid’s body weight was measured to determine its average daily gain (ADG). On day 70, 5 kids were chosen at random from each group to investigate nutrient in vivo digestibility and N balance. At the end of the study, all of the kids were slaughtered to examine carcass features. Nutrient intakes (neutral detergent fiber, acid detergent fiber, and ether extract) were higher (p ≤ 0.01) in LUP-containing diets than in the CON diet. The average daily gain was greater (p ≤ 0.03) in diets containing lupin grains than in the CON diet. Cost of gain ($US/kg growth) was lower (p = 0.004) in kids fed diets containing lupin than the CON diet. Dry matter and CP digestibility rates were greater (p ≤ 0.03) in lupin diets. Retained N was higher (p = 0.04) in lupin-containing diets than in the CON diet. Cold carcass weight was higher (p < 0.05) for kids consuming the LUP100 diet than the CON diet. In lupin diets, carcass cut weights were higher (p < 0.05). Results of the current study indicate that feeding black kids diets containing lupin grains at 100 or 200 g/kg DM basis is cost effective and would increase profitability.


1970 ◽  
Vol 47 (3) ◽  
pp. 389-396
Author(s):  
W. Addah ◽  
A. Ayantunde ◽  
E.K. Okine

The study investigated the effects of re-alimenting dietary protein or energy on growth, carcass characteristics and meat eating quality parameters of sheep. Twenty-seven intact rams (~9 months; 11.3 ± 0.5 kg) were randomly divided into three groups. Each group was fed a maintenance diet (MT) containing, on dry matter (DM) basis, 105 g/kg crude protein (CP) and 8.4 MJ/kg DM metabolizable energy (ME) for 30 days. Thereafter, they were continually fed the same MT or re-alimented with a high protein diet (HP) containing 169 g/kg DM CP and 9.3 MJ/kg ME or a high energy diet (HE) containing 123 g/kg DM CP and 10.6 MJ/kg ME for an additional 30 days to determine the effects of re-alimentation of protein or energy on their growth performance and carcass characteristics. During the initial 30-day period, DM intake (DMI) and growth performance were similar among the three groups. However, upon re-alimentation, average daily gain (ADG) and feed efficiency of sheep re-alimented with HP were greater than those maintained continually on MT or re-alimented with HE. Sheep on HP had higher feed efficiency, ADG and heavier carcasses than those fed MT or re-alimented with HE during the whole 60-day period. Growth of most viscera was less responsive to the restriction-re-alimentation feeding regimen except for the weights of the lungs, heart and intestines. Meat from sheep re-alimented with HE had a more intense ‘sheepy’ flavour than those fed MT or re-alimented with HP, but juiciness and tenderness were not affected. The higher ADG of sheep re-alimented with protein may be related more to enhanced efficiency of feed utilization than to higher DMI.Keywords: average daily gain, feed restriction, nutrient utilization efficiency, visceral organs


1987 ◽  
Vol 109 (3) ◽  
pp. 513-518 ◽  
Author(s):  
I. F. M. Marai ◽  
M. S. Nowar ◽  
Layla B. Bahgat ◽  
J. B. Owen

SummaryThirty Ossimi lambs were used in an experiment to compare those whose tail was docked shortly after birth with controls. After weaning at 4 months of age the groups were further subdivided and two of the four groups closely shorn according to a 2 × 2 factorial design.Male lambs at 20 kg were subjected to intensive finishing until the age of 50 weeks and nine were then slaughtered to determine carcass characteristics.There was a trend for increased live-weight gain in the docked lambs in the preweaning stage (up to 16 weeks).This trend was also present, although not statistically significant, in the final phase of intensive feeding from 20 kg weight to 50 weeks. Shearing significantly improved daily gain in this final period (P < 0·05). These increases in gain were also apparently associated with improvements in efficiency, as judged on a group basis.Docking and shearing also tended to cause increases in body measurements: height, chest girth and abdomen girth in the case of docking (P < 0·05) and chest girth, chest depth and abdomen girth in the case of shearing (P < 0–05).Carcass characteristics, measured on a relatively small sample, indicated several effects of docking and shearing on carcass traits although most of these were consistent with the expected differences stemming from the higher carcass weights acheived at 50 weeks of age by docked and sheared lambs.


2019 ◽  
Vol 4 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Pedro Henrique Vilela Carvalho ◽  
George A Perry ◽  
Tara L Felix

Abstract The objectives of the study were to determine the effect of steroidal implants on growth performance, carcass characteristics, and estradiol-17β (E2) concentrations in the blood and longissimus muscle of Holstein steers fed a grain-based diet. Seventy Holstein steers (average initial BW = 275 ± 6.4 kg, 10 to 12 mo of age) were assigned to treatments: (i) implanted with 80 mg of trenbolone acetate (TBA) and 16 mg of E2 (Component TE-IS with Tylan; Elanco Animal Health, Greenfield, IN) at the start of the trial (day 0), and reimplanted with 120 mg of TBA and 24 mg of E2 (Component TE-S with Tylan; Elanco Animal Health) on day 84 of the experiment; or (ii) no implant. Implanted Holstein steers were heavier (P ≤ 0.01) than nonimplanted Holstein steers in the middle (day 84) and at the end of the experiment (day 186). Implanting Holstein steers increased (P &lt; 0.01) average daily gain (ADG) and dry matter intake (DMI) without affecting gain-to-feed ratio compared with nonimplanted animals. Carcasses from implanted Holstein steers had greater (P &lt; 0.01) hot carcass weight (HCW) and longissimus muscle (LM) area than carcasses from nonimplanted steers. Implanting did not affect (P ≥ 0.21) other carcass characteristics. There was an increase (P = 0.03) of 1.3 pg of E2/g of muscle in implanted Holstein steers compared with that from nonimplanted Holstein steers. There was an implant × day interaction (P &lt; 0.01) in serum E2 concentrations. Serum E2 concentrations were not altered in nonimplanted Holstein steers, whereas E2 concentration increased (P &lt; 0.01) after steers were implanted, regardless of implant characteristics. Serum E2 peaked at 28 days after the first implant and then rapidly declined after day 56. In summary, steroidal implants administered on days 0 and 84 increased DMI, ADG, HCW, and LM area in Holstein steers compared with nonimplanted steers due to increased serum E2 concentrations. However, these changes did not improve feed efficiency or other carcass characteristics.


Sign in / Sign up

Export Citation Format

Share Document