0471 The effect of binding feed emzymes to spores of Bacillius subtlis and Bacillius coagulans on in vitro NDF digestibility in ruminal batch cultures

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 225-225
Author(s):  
C. L. Rosser ◽  
L. Jin ◽  
K. A. Beauchemin ◽  
M. Oba ◽  
S. M. Cutting ◽  
...  
Keyword(s):  
Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3819
Author(s):  
Carlos Poveda ◽  
Dora I. A. Pereira ◽  
Marie C. Lewis ◽  
Gemma E. Walton

Ferrous iron supplementation has been reported to adversely alter the gut microbiota in infants. To date, the impact of iron on the adult microbiota is limited, particularly at low supplementary concentrations. The aim of this research was to explore the impact of low-level iron supplementation on the gut microbiota of healthy and Irritable Bowel Syndrome (IBS) volunteers. Anaerobic, pH-controlled in vitro batch cultures were inoculated with faeces from healthy or IBS donors along with iron (ferrous sulphate, nanoparticulate iron and pea ferritin (50 μmol−1 iron)). The microbiota were explored by fluorescence in situ hybridisation coupled with flow cytometry. Furthermore, metabolite production was assessed by gas chromatography. IBS volunteers had different starting microbial profiles to healthy controls. The sources of iron did not negatively impact the microbial population, with results of pea ferritin supplementation being similar to nanoparticulate iron, whilst ferrous sulphate led to enhanced Bacteroides spp. The metabolite data suggested no shift to potentially negative proteolysis. The results indicate that low doses of iron from the three sources were not detrimental to the gut microbiota. This is the first time that pea ferritin fermentation has been tested and indicates that low dose supplementation of iron is unlikely to be detrimental to the gut microbiota.


2005 ◽  
Vol 71 (12) ◽  
pp. 8383-8389 ◽  
Author(s):  
K. Manderson ◽  
M. Pinart ◽  
K. M. Tuohy ◽  
W. E. Grace ◽  
A. T. Hotchkiss ◽  
...  

ABSTRACT Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.


2005 ◽  
Vol 81 (1) ◽  
pp. 31-38 ◽  
Author(s):  
M. L. Tejido ◽  
M. J. Ranilla ◽  
R. García-Martínez ◽  
M. D. Carro

AbstractThe effects of two concentrations of disodium malate on thein vitrofermentation of three substrates differing in their forage: concentrate ratio (0·8: 0·2, 0·5: 0·5 and 0·2: 0·8; g/g dry matter; low-, medium- and high-concentrate substrates, respectively) by rumen micro-organisms were studied using batch cultures. Rumen contents were collected from four Merino sheep offered lucerne hay ad libitum and supplemented daily with 400 g concentrate. Disodium malate was added to the incubation bottles to achieve final concentrations of 0, 4 and 8 mmol/l malate and15N was used as a microbial marker. Gas production was measured at regular intervals from 0 to 120 h of incubation to study fermentation kinetics. When gas production values were corrected for gas released from added malate, no effects (P> 0·05) of malate were detected for any of the estimated gas production parameters. In 17-h incubations, the final pH and total volatile fatty acid (VFA) production were increased (P< 0·001) by the addition of malate, but no changes (P> 0·05) were detected in the final amounts of ammonia-N and lactate. When net VFA productions were corrected for the amount of VFA produced from malate fermentation itself, adding malate did not affect (P> 0·05) the production of acetate, propionate and total VFA. Malate reduced methane (CH4) production by proportionately 0·058, 0·013 and 0·054 for the low-, medium- and high-concentrate substrates, respectively. Adding malate to batch cultures increased (P< 0·01) rumen microbial growth (mean values of 16·6, 18·3 and 18·4 mg of microbial N for malate at 0, 4 and 8 mmol/l, respectively), but did not affect (P> 0·05) its efficiency of growth (55·5, 56·7 and 54·3 mg of microbial N per g of organic matter apparently fermented for malate at 0, 4 and 8 mmol/l, respectively). There were no interactions (P> 0·05) malate × substrate for any of the measured variables, and no differences (P> 0·05) in pH, CH4production and microbial growth were found between malate at 4 and 8 mmol/l. The results indicate that malate had a beneficial effect on in vitro rumen fermentation of substrates by increasing VFA production and microbial growth, and that only subtle differences in the effects of malate were observed between substrates. Most of the observed effects, however, seem to be due to fermentation of malate itself.


2012 ◽  
Vol 109 (11) ◽  
pp. 1980-1989 ◽  
Author(s):  
Shahrul R. Sarbini ◽  
Sofia Kolida ◽  
Glenn R. Gibson ◽  
Robert A. Rastall

The fermentation selectivity of a commercial source of α-gluco-oligosaccharides (BioEcolians; Solabia) was investigatedin vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescentin situhybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. α-Gluco-oligosaccharides significantly increased theBifidobacteriumsp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in theBacteroides–Prevotellagroup and a decrease inFaecalibacterium prausnitziion both α-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of α-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.


1981 ◽  
Vol 50 (3-4) ◽  
pp. 157-178
Author(s):  
J. Kopečný ◽  
M. Marounek ◽  
S. Bartoš

2020 ◽  
Vol 8 (11) ◽  
pp. 1774
Author(s):  
Hugo R. Jimenez ◽  
Joan E. Edwards ◽  
Ruth Sanderson ◽  
Alison H. Kingston-Smith ◽  
Neil R. McEwan ◽  
...  

Anaerobic fungi in the gut of domesticated and wild mammalian herbivores play a key role in the host’s ability to utilize plant biomass. Due to their highly effective ability to enzymatically degrade lignocellulose, anaerobic fungi are biotechnologically interesting. Numerous factors have been shown to affect the ability of anaerobic fungi to break down plant biomass. However, methods to reduce the non-productive lag time in batch cultures and the effect of leaf-blade cut-length and condition on the fungal fermentation are not known. Therefore, experimentation using a novel gas production approach with pre-grown, axenic cultures of Neocallimastix frontalis was performed using both fresh and air-dried perennial ryegrass leaf-blades of different cut-lengths. The methodology adopted removed the lag-phase and demonstrated the digestion of un-autoclaved leaf-blades. Fermentation of leaf-blades of 4.0 cm cut-length produced 18.4% more gas yet retained 11.2% more apparent DM relative to 0.5 cm cut-length leaf-blades. Drying did not affect fermentation by N. frontalis, although an interaction between drying and leaf-blade cut-length was noted. Removal of the lag phase and the use of un-autoclaved substrates are important when considering the biotechnological potential of anaerobic fungi. A hypothesis based upon sporulation at cut surfaces is proposed to describe the experimental results.


2014 ◽  
Vol 112 (8) ◽  
pp. 1303-1314 ◽  
Author(s):  
Shahrul R. Sarbini ◽  
Sofia Kolida ◽  
Eddie R. Deaville ◽  
Glenn R. Gibson ◽  
Robert A. Rastall

The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, thein vitroresponse of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescentin situhybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts ofBacteroides–Prevotellaand decreasing those ofFaecalibacterium prausnitziiandRuminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.


Metabolites ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Zhen-Wei Zhang ◽  
Yan-Lu Wang ◽  
Wei-Kang Wang ◽  
Yong-Yang Chen ◽  
Xue-Meng Si ◽  
...  

A class of aliphatic short chain nitrocompounds have been reported as being capable of CH4 reduction both in vitro and in vivo. However, the laboratory evidence associated with the metabolic fate of nitrocompounds in the rumen has not been well documented. The present study was conducted to compare in vitro degradation and metabolism of nitroethane (NE), 2-nitroethanol (NEOH), and 2-nitro-1-propanol (NPOH) incubated with mixed rumen microorganisms of dairy cows. After 10 mM supplementation of nitrocompounds, a serious of batch cultures were carried out for 120 h under the presence of two substrates differing in the ratio of maize meal to alfalfa hay (HF, 1:4; LF, 4:1). Compared to the control, methane production was reduced by 59% in NPOH and by >97% in both NE and NEOH, and such antimethanogenic effects were more pronounced in the LF than the HF group. Although NE, NEOH, and NPOH addition did not alter total VFA production, the rumen fermentation pattern shifted toward increasing propionate and butyrate and decreasing acetate production. The kinetic disappearance of each nitrocompound was well fitted to the one-compartment model, and the disappearance rate (k, %/h) of NE was 2.6 to 5.2 times greater than those of NEOH and NPOH. Higher intermediates of nitrite occurred in NEOH in comparison with NPOH and NE while ammonia N production was lowest in NEOH. Consequently, a stepwise accumulation of bacterial crude protein (BCP) in response to the nitrocompound addition was observed in both the HF and LF group. In brief, both NE and NEOH in comparison with NPOH presented greater antimethanogenic activity via the shift of rumen fermentation. In addition, the present study provided the first direct evidence that rumen microbes were able to cleave these nitrocompounds into nitrite, and the subsequent metabolism of nitrite into ammonia N may enhance the growth of rumen microbes or promote microbial activities.


2020 ◽  
Vol 90 ◽  
pp. 103020
Author(s):  
Martin Bachmann ◽  
Maren Glatter ◽  
Mandy Bochnia ◽  
Monika Wensch-Dorendorf ◽  
Jörg M. Greef ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document