scholarly journals Assessing the mobility of clay materials used in the construction of engineered safety barriers for radioactive waste disposal

2021 ◽  
Vol 16 (3) ◽  
pp. 51-60
Author(s):  
S. G. Maryinskikh ◽  
◽  
V. V. Zhigarev ◽  
O. A. Ilyina ◽  
V. V. Krupskaya ◽  
...  

Large-scale efforts implemented under the Unified State System for RW Management including the construction of near-surface disposal facilities for RW Class 3 and 4, as well as provision of long-term safety at nuclear legacy facilities require the scientific community to develop systems of engineered safety barriers preventing radionuclide releases into the environment. In the near future, at least 70 storage facilities for non-retrievable RW will require the installation of such barrier systems. The quality of barrier materials constituting to the system of engineered safety barriers (EBS), including their ability of providing a uniform backfilling of cavities inside the structures, is viewed as an important design parameter requiring proper assessment both under the production control of materials and quality control of designed EBS, including relevant in situ testing.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2021 ◽  
Vol 13 (14) ◽  
pp. 2848
Author(s):  
Hao Sun ◽  
Qian Xu

Obtaining large-scale, long-term, and spatial continuous soil moisture (SM) data is crucial for climate change, hydrology, and water resource management, etc. ESA CCI SM is such a large-scale and long-term SM (longer than 40 years until now). However, there exist data gaps, especially for the area of China, due to the limitations in remote sensing of SM such as complex topography, human-induced radio frequency interference (RFI), and vegetation disturbances, etc. The data gaps make the CCI SM data cannot achieve spatial continuity, which entails the study of gap-filling methods. In order to develop suitable methods to fill the gaps of CCI SM in the whole area of China, we compared typical Machine Learning (ML) methods, including Random Forest method (RF), Feedforward Neural Network method (FNN), and Generalized Linear Model (GLM) with a geostatistical method, i.e., Ordinary Kriging (OK) in this study. More than 30 years of passive–active combined CCI SM from 1982 to 2018 and other biophysical variables such as Normalized Difference Vegetation Index (NDVI), precipitation, air temperature, Digital Elevation Model (DEM), soil type, and in situ SM from International Soil Moisture Network (ISMN) were utilized in this study. Results indicated that: 1) the data gap of CCI SM is frequent in China, which is found not only in cold seasons and areas but also in warm seasons and areas. The ratio of gap pixel numbers to the whole pixel numbers can be greater than 80%, and its average is around 40%. 2) ML methods can fill the gaps of CCI SM all up. Among the ML methods, RF had the best performance in fitting the relationship between CCI SM and biophysical variables. 3) Over simulated gap areas, RF had a comparable performance with OK, and they outperformed the FNN and GLM methods greatly. 4) Over in situ SM networks, RF achieved better performance than the OK method. 5) We also explored various strategies for gap-filling CCI SM. Results demonstrated that the strategy of constructing a monthly model with one RF for simulating monthly average SM and another RF for simulating monthly SM disturbance achieved the best performance. Such strategy combining with the ML method such as the RF is suggested in this study for filling the gaps of CCI SM in China.


Author(s):  
Arndt Wiessner ◽  
Jochen A. Müller ◽  
Peter Kuschk ◽  
Uwe Kappelmeyer ◽  
Matthias Kästner ◽  
...  

The large scale of the contamination by the former carbo-chemical industry in Germany requires new and often interdisciplinary approaches for performing an economically sustainable remediation. For example, a highly toxic and dark-colored phenolic wastewater from a lignite pyrolysis factory was filled into a former open-cast pit, forming a large wastewater disposal pond. This caused an extensive environmental pollution, calling for an ecologically and economically acceptable strategy for remediation. Laboratory-scale investigations and pilot-scale tests were carried out. The result was the development of a strategy for an implementation of full-scale enhanced in situ natural attenuation on the basis of separate habitats in a meromictic pond. Long-term monitoring of the chemical and biological dynamics of the pond demonstrates the metamorphosis of a former highly polluted industrial waste deposition into a nature-integrated ecosystem with reduced danger for the environment, and confirmed the strategy for the chosen remediation management.


Oryx ◽  
2002 ◽  
Vol 36 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Mike Maunder ◽  
Wayne Page ◽  
John Mauremootoo ◽  
Richard Payendee ◽  
Yousoof Mungroo ◽  
...  

Abstract The conservation status of the five genera and 11 species of palm endemic to the Mascarene Islands (Mauritius, La Réunion and Rodriques) are reviewed. All species are threatened with extinction; nine taxa are classified as Critically Endangered and four as Endangered on the 2000 IUCN Red List. Two taxa survive as single wild specimens (Hyophorbe amaricaulis and Dictyosperma album var. conjugatum); an additional seven taxa have wild populations of 100 or fewer. Although the historical phase of large-scale forest clearance has passed, the remaining palm populations in the Mascarenes are under threat from the effects of population fragmentation, invasive plants and animals, and high levels of seed predation that prevent natural regeneration. The advantages of in situ management for the recovery of these palm populations are discussed. Without a long-term conservation programme, utilising both in situ and ex situ management, extinction of wild populations will occur.


2013 ◽  
Vol 127 (5) ◽  
pp. 509-510 ◽  
Author(s):  
H Mohammed ◽  
P Martinez-Devesa

AbstractObjective:To demonstrate that ventilation tubes can remain in situ much longer than expected, and that the materials used in the manufacturing of these tubes can degrade and cause complications. Long-term follow up and replacement of the tube is recommended.Method:Case report and review of the literature concerning the use of long-term ventilation tubes.Results:In the case reported, the ventilation tube was in place for 19 years, which resulted in chronic ear discharge. When it was removed, it was noted that the tube itself had degraded and had caused a chronic inflammatory reaction.Conclusion:We recommend that the long-term use of ventilation tubes is followed up and that the tube is replaced before material degradation takes place.


Author(s):  
Juyoul Kim ◽  
Sukhoon Kim ◽  
Jin Beak Park ◽  
Sunjoung Lee

In the Korean LILW (Low- and Intermediate-Level radioactive Waste) repository at Gyeongju city, the degradation of organic wastes and the corrosion of metallic wastes and steel containers would be important processes that affect repository geochemistry, speciation and transport of radionuclides during the lifetime of a radioactive waste disposal facility. Gas is generated in association with these processes and has the potential threat to pressurize the repository, which can promote the transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. The Korean research project on gas generation is being performed by Korea Radioactive Waste Management Corporation (hereafter referred to as “KRMC”). A full-scale in-situ experiment will form a central part of the project, where gas generation in real radioactive low-level maintenance waste from nuclear power plants will be done as an in-depth study during ten years at least. In order to examine gas generation issues from an LILW repository which is being constructed and will be completed by the end of December, 2012, two large-scale facilities for the gas generation experiment will be established, each equipped with a concrete container carrying on 16 drums of 200 L and 9 drums of 320 L of LILW from Korean nuclear power plants. Each container will be enclosed within a gas-tight and acid-proof steel tank. The experiment facility will be fully filled with ground water that provides representative geochemical conditions and microbial inoculation in the near field of repository. In the experiment, the design includes long-term monitoring and analyses for the rate and composition of gas generated, and aqueous geochemistry and microbe populations present at various locations through on-line analyzers and manual periodical sampling. A main schedule for establishing the experiment facility is as follows: Completion of the detailed design until the second quarter of the year 2010; Completion of the manufacture and on-site installation until the second quarter of the year 2011; Start of the operation and monitoring from the third quarter of the year 2011.


2002 ◽  
Vol 713 ◽  
Author(s):  
Mostafa Fayek ◽  
Keld A. Jensen ◽  
Rodney C. Ewing ◽  
Lee R. Riciputi

ABSTRACTUranium deposits can provide important information on the long-term performance of radioactive waste forms because uraninite (UO2+X) is similar to the UO2 in spent nuclear fuel. The Oklo-Okélobondo U-deposits, Gabon, serve as natural laboratory where the long-term (hundreds to billions of years) migration of uranium and other radionuclides can be studied over large spatial scales (nm to km). The natural fission reactors associated with the Oklo- Okélobondo U-deposits occur over a range of depths (100 to 400 m) and provide a unique opportunity to study the behavior of uraninite in near surface oxidizing environments versus more reducing conditions at depth. Previously, it has been difficult to constrain the timing of interaction between U-rich minerals and post-depositional fluids. These problems are magnified because uraninite is susceptible to alteration, it continuously self-anneals radiation damage, and because these processes are manifested at the nm to μm scale. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few μm. Preliminary U-Pb results show that uraninite from all reactor zones are highly discordant with ages aaproaching the timing of fission chain reactions (1945±50 Ma) and resetting events at 1180±47 Ma and 898±46 Ma. Oxygen isotopic analyses show that uraninite from reactors that occur in near surface environments (δ18O= −14.4‰ to −8.5‰) have reacted more extensively with groundwater of meteoric origin relative to reactors located at greater depths (μ18O= −10.2‰ to −7.3‰). This study emphasizes the importance of using in situ high spatial resolution analysis techniques for natural analogue studies.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Noelia R. Sileo ◽  
Néstor O. Fuentes

ABSTRACTDevelopment of numerical tools for performance assessment studies of radioactive waste disposal facilities, must address the management of the wide-ranging uncertainties associated with the long-term behaviour of these complex systems. Different approaches and assumptions are made in order to identify and describe relationships between the disposal system and its environment. They take into account, among other factors, the uncertainties associated with temporal evolution of the system within a proposed scenario; the landscape changes arising from future human actions, climate and geological events and processes; the relationships between components of the disposal system and its immediate environment; the behaviour and characteristics of radionuclides within the system and their role in contributing to radiation exposure. In all cases, the different scenario-based models are typically used to determine the radiological significance of potential future discharges from waste disposal facilities. However, it is important to keep always in mind that in any specific case, the purpose of developing and/or applying a model may vary from a simple calculation (e.g. to support concept development) to detailed site-specific performance assessment in support of a disposal license application. The assumptions and modelling simplifications that are appropriate to one type of calculation may not be so easily justified in different circumstances. In order to develop the capability of modelling different long-term scenarios for a generic disposal site for low and intermediate level radioactive wastes, implementation of models of both the near-field/geosphere and biosphere were performed using general approaches for geosphere-biosphere interface, with sub-models for the whole system.


2021 ◽  
Author(s):  
Juan Cuesta ◽  
Lorenzo Costantino ◽  
Matthias Beekmann ◽  
Guillaume Siour ◽  
Laurent Menut ◽  
...  

Abstract. We present a comprehensive study integrating satellite observations of ozone pollution, in situ measurements and chemistry transport model simulations for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020 over Europe. Satellite observations are derived from the IASI+GOME2 multispectral synergism, which provides particularly enhanced sensitivity to near-surface ozone pollution. These observations are first analysed in terms of differences between the average on 1–15 April 2020, when the strictest lockdown restrictions took place, and the same period in 2019. They show clear enhancements of near-surface ozone in Central Europe and Northern Italy, and some other hotspots, which are typically characterized by VOC-limited chemical regimes. An overall reduction of ozone is observed elsewhere, where ozone chemistry is limited by the abundance of NOx. The spatial distribution of positive and negative ozone concentration anomalies observed from space is in relatively good quantitative agreement with surface in situ measurements over the continent (a correlation coefficient of 0.55, a root-mean-squared difference of 11 ppb and the same standard deviation and range of variability). An average bias of ∼8 ppb between the two observational datasets is remarked, which can partly be explained by the fact the satellite approach retrieves partial columns of ozone with a peak sensitivity above the surface (near 2 km of altitude). For assessing the impact of the reduction of anthropogenic emissions during the lockdown, we adjust the satellite and in situ surface observations for withdrawing the influence of meteorological conditions in 2020 and 2019. This adjustment is derived from the chemistry transport model simulations using the meteorological fields of each year and identical emission inventories. This observational estimate of the influence of lockdown emission reduction is consistent for both datasets. They both show lockdown-associated ozone enhancements in hotspots over Central Europe and Northern Italy, with a reduced amplitude with respect to the total changes observed between the two years, and an overall reduction elsewhere over Europe and the ocean. Satellite observations additionally highlight the ozone anomalies in the regions remote from in situ sensors, an enhancement over the Mediterranean likely associated with maritime traffic emissions and a marked large-scale reduction of ozone elsewhere over ocean (particularly over the North Sea), in consistency with previous assessments done with ozonesondes measurements in the free troposphere. These observational assessments are compared with model-only estimations, using the CHIMERE chemistry transport model. For analysing the uncertainty of the model estimates, we perform two sets of simulations with different setups, differing in the emission inventories, their modifications to account for changes in anthropogenic activities during the lockdown and the meteorological fields. Whereas a general qualitative consistency of positive and negative ozone anomalies is remarked between all model and observational estimates, significant changes are seen in their amplitudes. Models underestimate the range of variability of the ozone changes by at least a factor 2 with respect to the two observational data sets, both for enhancements and decreases of ozone, while the large-scale ozone decrease is not simulated. With one of the setups, the model simulates ozone enhancements a factor 3 to 6 smaller than with the other configuration. This is partly linked to the emission inventories of ozone precursors (at least a 30 % difference), but mainly to differences in vertical mixing of atmospheric constituents depending on the choice of the meteorological model.


Sign in / Sign up

Export Citation Format

Share Document