scholarly journals ABOUT THE FUNDAMENTAL ASPECTS OF THE GENETIC APPROACH TO THE STUDY OF SOILS

2019 ◽  
Vol 14 (1) ◽  
pp. 8-19
Author(s):  
V. Т. TROFIMOV ◽  
V. A. KOROLEV

The fundamental methodological and philosophical aspects of the genetic approach to the study of soil formation, the genesis of the composition, structure, state and properties, as well as the role of the spatial position of soils in the array and the role of anthropogenic impacts on soil massifs, including the formation of improved and degraded soils, are considered. In the genetic approach to the study of soils, which became the methodological basis of soil science, is that the composition, structure, condition and properties of soils are considered as the result of their genesis and subsequent postgenetic transformations at the stage of diagenesis, catagenesis, metamorphism and hypergenesis. The distinction of concepts of “soil genesis”, “genesis of soil composition”, “genesis of soil structure”, “genesis of soil condition” and “genesis of soil properties” is shown. When characterizing these concepts, it is necessary to take into account the syngenetic, epi-syngenetic, syn-epigenetic and epigenetic features of soils. In accordance with this, the composition, structure, condition, and properties of soils may be of four classes according to their origin: syngenetic, epi-syngenetic, syn-epigenetic, or epigenetic. The genetic approach plays a particularly important role in the study of anthropogenically-formed and man-made altered soils, as well as in the construction of new genetic classifications of natural and man-made soils. The genetic approach to the study of soils follows from the Priklonsky-SergeevLomtadze law: the composition, structure, condition and properties of soils are determined by their genesis, the nature of postgenetic processes and the modern spatial (coordinate) position. This fundamental approach should underlie the development of new general classifications of soils, which is especially important now, when work is underway to prepare the new GOST 25100 “Soils. General classification”.

2021 ◽  
Vol 13 (12) ◽  
pp. 6673
Author(s):  
Lidia Luty ◽  
Kamila Musiał ◽  
Monika Zioło

The functioning of various agroecosystems is nowadays shaped by different farming systems, which may impair their functions, as well as being beneficial to them. The benefits include ecosystem services, defined as economic and noneconomic values gained by humans from ecosystems, through supporting soil formation and nutrient circulation, and the impact of agriculture on climate and biodiversity. Their mutual flow and various disturbances depend on the agroecosystem’s management method, which is associated with the type of management of agricultural land (AL) in individual farms. This paper raises a problem of transformation in the structure of three main farming systems in Poland, in 2004–2018, in relation to the implementation of 16 selected ecosystem services and their scale. Special attention was given to organic farming, as the most environmentally friendly and sustainable. The analysis demonstrates the increase in ALs in that type of production during the analyzed period of time. Disparities of transformation associated with the type of agricultural system were noticeable at the regional level, which were presented in 16 Polish voivodeships. The results of the analysis confirm that the organic system, which is an important carrier of various ecosystem services, gained a stable position. Moreover, areas with integrated farming still do not exceed 0.5% of total agricultural lands in such voivodeships. The analysis of factors influencing the deterioration or disappearance of selected environmental services characterizing agricultural systems indicates the need to depart from an intensive conventional management system.


2004 ◽  
Vol 104 (2) ◽  
pp. 27-34 ◽  
Author(s):  
Theodore W. Awadzi ◽  
M. A. Cobblah ◽  
Henrik Breuning-Madsen

Pythagoras ◽  
2008 ◽  
Vol 0 (68) ◽  
Author(s):  
Michael De Villiers

This paper first discusses the genetic approach and the relevance of the history of mathematics for teaching, reasoning by analogy, and the role of constructive defining in the creation of new mathematical content. It then uses constructive defining to generate a new generalization of the Nagel line of a triangle to polygons circumscribed around a circle, based on an analogy between the Nagel line and the Euler line of a triangle.


1996 ◽  
Vol 19 ◽  
pp. 93-114
Author(s):  
Antonio José Teixeira Guerra ◽  
Rosangela Garrido Machado Botelho

This paper regards the role of soil characteristics and properties on pedological surveys and soil erosion investigations. Therefore, the main factors of soil formation are here discussed. Furthermore, the main chemical and physical soil properties are also taken into consideration, in order to approach this subject. Finally, some erosion processes are also carried out, together with the main erosion forms and the environmental impacts caused by these associated processes.


Author(s):  
I.R. Snihura ◽  
D.N. Togobitskaya

The aim of the work is to identify the influence of the chemical composition of steels and special-purpose alloys on the formation of their physicochemical and structural-sensitive properties. This problem is solved by mathematical modeling of the inseparable chain «composition - structure – property» taking into account the parameters of interatomic interaction in the melt based on the concept of a directed chemical bond. A steel melt is considered as a chemically homogeneous system, and the state of the melts is expressed through a set of integral parameters, the main of which are: Zy - system charge state parameter (e); r - statistically average internuclear distance (10-1nm); tgα is a constant for each element, which characterizes the change in the radius of the ion as its charge changes. On the basis of experimental information on properties and using the parameters of interatomic interaction, computational models are proposed for predicting the properties of steels and alloys. The forecast models took into account the parameters of micro-inhomogeneity of steel, which ensured a high accuracy of the operational forecast. A comparative analysis of the results of steel melting with the corresponding calculations based on the JMatPro software package confirmed the effectiveness of using the interatomic interaction parameters as models. The proposed models for determining the melting of chromium-nickel steels are recommended for use with the content of basic elements Cr, Ni from 0 to 30%. The research results are recommended for use in industrial environments through the integration of the developed models in the process control system of steelmaking, which will contribute to the directed formation of the composition and properties of smelting products, as well as reducing energy costs.


2020 ◽  
Vol 28 (1) ◽  
pp. 389-404
Author(s):  
Mirosław Mleczek ◽  
Anna Budka ◽  
Pavel Kalač ◽  
Marek Siwulski ◽  
Przemysław Niedzielski

AbstractIt has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg−1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg−1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg−1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent.


2019 ◽  
Vol 71 (2) ◽  
pp. 520-542 ◽  
Author(s):  
Zhixiang Jiang ◽  
Fei Lian ◽  
Zhenyu Wang ◽  
Baoshan Xing

Abstract Biochar is a promising soil additive for use in support of sustainable crop production. However, the high level of heterogeneity in biochar properties and the variations in soil composition present significant challenges to the successful uptake of biochar technologies in diverse agricultural soils. An improved understanding of the mechanisms that contribute to biochar–soil interactions is required to address issues related to climate change and cultivation practices. This review summarizes biochar modification approaches (physical, chemical, and biochar-based organic composites) and discusses the potential role of biochar in sustainable crop production and soil resiliency, including the degradation of soil organic matter, the improvement of soil quality, and reductions in greenhouse gas emissions. Biochar design is crucial to successful soil remediation, particularly with regard to issues arising from soil structure and composition related to crop production. Given the wide variety of feedstocks for biochar production and the resultant high surface heterogeneity, greater efforts are required to optimize biochar surface functionality and porosity through appropriate modifications. The design and establishment of these approaches and methods are essential for the future utilization of biochar as an effective soil additive to promote sustainable crop production.


2009 ◽  
Vol 186 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Delphine Mérino ◽  
Maybelline Giam ◽  
Peter D. Hughes ◽  
Owen M. Siggs ◽  
Klaus Heger ◽  
...  

Proteins of the Bcl-2 family are critical regulators of apoptosis, but how its BH3-only members activate the essential effectors Bax and Bak remains controversial. The indirect activation model suggests that they simply must neutralize all of the prosurvival Bcl-2 family members, whereas the direct activation model proposes that Bim and Bid must activate Bax and Bak directly. As numerous in vitro studies have not resolved this issue, we have investigated Bim's activity in vivo by a genetic approach. Because the BH3 domain determines binding specificity for Bcl-2 relatives, we generated mice having the Bim BH3 domain replaced by that of Bad, Noxa, or Puma. The mutants bound the expected subsets of prosurvival relatives but lost interaction with Bax. Analysis of the mice showed that Bim's proapoptotic activity is not solely caused by its ability to engage its prosurvival relatives or solely to its binding to Bax. Thus, initiation of apoptosis in vivo appears to require features of both models.


Sign in / Sign up

Export Citation Format

Share Document