Physical and chemical study of coated Candida cylindracea with sorbitan esters

2021 ◽  
Vol 25 (10) ◽  
pp. 43-48
Author(s):  
Nacer Rezgui ◽  
Chahra Bidjou-Haiour

A new effective biocatalyst was prepared by coating lipase from Candida cylindracea with sorbitan esters such as span 60 and 65. This biocatalyst was characterized by employing the Scanning Electron Microscopy, X-Ray diffraction patterns and a lipase assay. The type of surfactant used during the lipase modification process has shown significant effect in the lipase activity and the protein content of the modified lipase complex. It was found that catalytic behavior of modified lipase was greatly affected by the source of the used span. Span 65-coated Candida cylindracea lipase showed the highest conversion of 50% in enzymatic esterification of glucose and lauric acid.

1958 ◽  
Vol 36 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Norman F. H. Bright ◽  
Joseph G. Wurm

Three new complex fluorides of trivalent titanium have been isolated from the products of electrolysis, under an inert atmosphere, of molten baths of KC1, NaCl, or mixtures of KCl and NaCl, containing either K2TiF6 or Na2TiF6. Electrolytic baths containing a mixture of KCl and NaCl with either K2TiF6 or Na2TiF6 yielded a violet-colored, face-centered cubic compound identified as K2NaTiF6, which was virtually insoluble in water and amenable to electrostatic separation from the metallic titanium also produced in the electrolysis. Baths containing molten mixtures of K2TiF6 and KCl gave a pale violet compound K3TiF6, which was slightly soluble in water. Baths containing Na2TiF6 and NaCl gave a deep violet-colored compound Na3TiF6 which was almost insoluble in water. The compounds K3TiF6 and Na3TiF6 have structures which approximate to cubic. The compounds K2NaTiF6 and Na3TiF6 are more stable to atmospheric oxidation than is K3TiF6. X-Ray diffraction patterns have been recorded for these compounds and some of their physical and chemical properties determined.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


Author(s):  
D. Shindo

Imaging plate has good properties, i.e., a wide dynamic range and good linearity for the electron intensity. Thus the digital data (2048x1536 pixels, 4096 gray levels in log scale) obtained with the imaging plate can be used for quantification in electron microscopy. By using the image processing system (PIXsysTEM) combined with a main frame (ACOS3900), quantitative analysis of electron diffraction patterns and high-resolution electron microscope (HREM) images has been successfully carried out.In the analysis of HREM images observed with the imaging plate, quantitative comparison between observed intensity and calculated intensity can be carried out by taking into account the experimental parameters such as crystal thickness and defocus value. An example of HREM images of quenched Tl2Ba2Cu1Oy (Tc = 70K) observed with the imaging plate is shown in Figs. 1(b) - (d) comparing with a structure model proposed by x-ray diffraction study of Fig. 1 (a). The image was observed with a JEM-4000EX electron microscope (Cs =1.0 mm).


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


1985 ◽  
Vol 50 (10) ◽  
pp. 2139-2145
Author(s):  
Alexander Muck ◽  
Eva Šantavá ◽  
Bohumil Hájek

The infrared spectra and powder X-ray diffraction patterns of polycrystalline YPO4-YCrO4 samples are studied from the point of view of their crystal symmetry. Mixed crystals of the D4h19 symmetry are formed over the region of 0-30 mol.% YPO4 in YCrO4. The Td → D2d → D2 or C2v(GS eff) correlation is appropriate for both PO43- and CrO43- anions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Banko ◽  
Phillip M. Maffettone ◽  
Dennis Naujoks ◽  
Daniel Olds ◽  
Alfred Ludwig

AbstractWe apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.


2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 312
Author(s):  
Florian Lauraux ◽  
Stéphane Labat ◽  
Sarah Yehya ◽  
Marie-Ingrid Richard ◽  
Steven J. Leake ◽  
...  

The simultaneous measurement of two Bragg reflections by Bragg coherent X-ray diffraction is demonstrated on a twinned Au crystal, which was prepared by the solid-state dewetting of a 30 nm thin gold film on a sapphire substrate. The crystal was oriented on a goniometer so that two lattice planes fulfill the Bragg condition at the same time. The Au 111 and Au 200 Bragg peaks were measured simultaneously by scanning the energy of the incident X-ray beam and recording the diffraction patterns with two two-dimensional detectors. While the former Bragg reflection is not sensitive to the twin boundary, which is oriented parallel to the crystal–substrate interface, the latter reflection is only sensitive to one part of the crystal. The volume ratio between the two parts of the twinned crystal is about 1:9, which is also confirmed by Laue microdiffraction of the same crystal. The parallel measurement of multiple Bragg reflections is essential for future in situ and operando studies, which are so far limited to either a single Bragg reflection or several in series, to facilitate the precise monitoring of both the strain field and defects during the application of external stimuli.


Sign in / Sign up

Export Citation Format

Share Document