1420 - NanoAmpli-Seq: A de novo protocol for amplicon sequencing from mixed microbial communities on the nanopore sequencing platform

Author(s):  
Szymon Calus ◽  
Umer Zeeshan Ijaz
2021 ◽  
Author(s):  
Chen Yang ◽  
Theodora Lo ◽  
Ka Ming Nip ◽  
Saber Hafezqorani ◽  
René L Warren ◽  
...  

Abstract Background: Nanopore sequencing is crucial to metagenomic studies as its kilobase-long reads can contribute to resolving genomic structural differences among microbes. However, sequencing platform-specific challenges, including high base-call error rate, non-uniform read lengths, and the presence of chimeric artifacts, necessitate specifically designed analytical tools, such as microbial abundance estimation and metagenome assembly algorithms. When developing and testing bioinformatics tools and pipelines, the use of simulated datasets with characteristics that are true to the sequencing platform under evaluation is a cost-effective way to provide a ground truth and assess the performance in a controlled environment. Results: Here, we present Meta-NanoSim, a fast and versatile utility that characterizes and simulates the unique properties of nanopore metagenomic reads. It improves upon state-of-the-art methods on microbial abundance estimation through a base-level quantification algorithm. Meta-NanoSim can simulate complex microbial communities composed of both linear and circular genomes, and can stream reference genomes from online servers directly. Simulated datasets showed high congruence with experimental data in terms of read length, error profiles, and abundance levels. We demonstrate that Meta-NanoSim simulated data can facilitate the development of metagenomic algorithms and guide experimental design through a metagenome assembly benchmarking task. Conclusions: The Meta-NanoSim characterization module investigates read features including chimeric information and abundance levels, while the simulation module simulates large and complex multi-sample microbial communities with different abundance profiles. All trained models and the software are freely accessible at Github: https://github.com/bcgsc/NanoSim .


2018 ◽  
Author(s):  
Szymon T Calus ◽  
Umer Z Ijaz ◽  
Ameet J Pinto

AbstractBackgroundAmplicon sequencing on Illumina sequencing platforms leverages their deep sequencing and multiplexing capacity, but is limited in genetic resolution due to short read lengths. While Oxford Nanopore or Pacific Biosciences platforms overcome this limitation, their application has been limited due to higher error rates or smaller data output.ResultsIn this study, we introduce an amplicon sequencing workflow, i.e., NanoAmpli-Seq, that builds on Intramolecular-ligated Nanopore Consensus Sequencing (INC-Seq) approach and demonstrate its application for full-length 16S rRNA gene sequencing. NanoAmpli-Seq includes vital improvements to the aforementioned protocol that reduces sample-processing time while significantly improving sequence accuracy. The developed protocol includes chopSeq software for fragmentation and read orientation correction of INC-Seq consensus reads while nanoClust algorithm was designed for read partitioning-based de novo clustering and within cluster consensus calling to obtain full-length 16S rRNA gene sequences.ConclusionsNanoAmpli-Seq accurately estimates the diversity of tested mock communities with average sequence accuracy of 99.5% for 2D and 1D2 sequencing on the nanopore sequencing platform. Nearly all residual errors in NanoAmpli-Seq sequences originate from deletions in homopolymer regions, indicating that homopolymer aware basecalling or error correction may allow for sequencing accuracy comparable to short-read sequencing platforms.


2020 ◽  
Author(s):  
Xiaohuan Sun ◽  
Jingjing Wang ◽  
Chao Fang ◽  
Jiguang Li ◽  
Mo Han ◽  
...  

ABSTRACTMetabarcoding has become the de facto method for characterizing the structure of microbial communities in complex environmental samples. To determine how sequencing platform may influence microbial community characterization, we present a large-scale comparison of two sequencing platforms; Illumina MiSeq and a new platform DNBSEQ-G400 developed by MGI Tech. The accuracy of DNBSEQ-G400 on bacterial and fungal mock samples and compared sequencing consistency and precision between DNBSEQ-G400 and MiSeq platforms by sequencing the fungal ITS2 region from 1144 soil samples with 3 technical replicates. The DNBSEQ-G400 showed a high accuracy in reproducing mock communities containing different proportions of bacteria and fungi, respectively. The taxonomic profiles of the 1144 soil samples generated by the two DNBSEQ-G400 modes closely resembled each other and were highly correlated with those generated by the MiSeq platform. Analyses of technical replicates demonstrated a run bias against certain taxa on the MiSeq but not DNBSEQ-G400 platform. Based on lower cost, greater capacity, and less bias, we conclude that DNBSEQ-G400 is an optimal platform for short-term metabarcoding of microbial communities.IMPORTANCEExperimental steps that generate sequencing bias during amplicon sequencing have been intensively evaluated, including the choice of primer pair, polymerase, PCR cycle and technical replication. However, few studies have assessed the accuracy and precision of different sequencing platforms. Here, we compared the performance of newly released DNBSEQ-G400 sequencer with that of the commonly used Illumina MiSeq platform by leveraging amplicon sequencing of a large number of soil samples. Significant sequencing bias among major fungal genera was found in parallel MiSeq runs, which can be easily neglected without the use of sequencing controls. We emphasize the importance of technical controls in large-scale sequencing efforts and provide DNBSEQ-G400 as an alternative with increased sequencing capacity and more stable reproducibility for amplicon sequencing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazutoshi Yoshitake ◽  
Gaku Kimura ◽  
Tomoko Sakami ◽  
Tsuyoshi Watanabe ◽  
Yukiko Taniuchi ◽  
...  

AbstractAlthough numerous metagenome, amplicon sequencing-based studies have been conducted to date to characterize marine microbial communities, relatively few have employed full metagenome shotgun sequencing to obtain a broader picture of the functional features of these marine microbial communities. Moreover, most of these studies only performed sporadic sampling, which is insufficient to understand an ecosystem comprehensively. In this study, we regularly conducted seawater sampling along the northeastern Pacific coast of Japan between March 2012 and May 2016. We collected 213 seawater samples and prepared size-based fractions to generate 454 subsets of samples for shotgun metagenome sequencing and analysis. We also determined the sequences of 16S rRNA (n = 111) and 18S rRNA (n = 47) gene amplicons from smaller sample subsets. We thereafter developed the Ocean Monitoring Database for time-series metagenomic data (http://marine-meta.healthscience.sci.waseda.ac.jp/omd/), which provides a three-dimensional bird’s-eye view of the data. This database includes results of digital DNA chip analysis, a novel method for estimating ocean characteristics such as water temperature from metagenomic data. Furthermore, we developed a novel classification method that includes more information about viruses than that acquired using BLAST. We further report the discovery of a large number of previously overlooked (TAG)n repeat sequences in the genomes of marine microbes. We predict that the availability of this time-series database will lead to major discoveries in marine microbiome research.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannes Petruschke ◽  
Christian Schori ◽  
Sebastian Canzler ◽  
Sarah Riesbeck ◽  
Anja Poehlein ◽  
...  

Abstract Background The intestinal microbiota plays a crucial role in protecting the host from pathogenic microbes, modulating immunity and regulating metabolic processes. We studied the simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species with a particular focus on the discovery of novel small proteins with less than 100 amino acids (= sProteins), some of which may contribute to shape the simplified human intestinal microbiota. Although sProteins carry out a wide range of important functions, they are still often missed in genome annotations, and little is known about their structure and function in individual microbes and especially in microbial communities. Results We created a multi-species integrated proteogenomics search database (iPtgxDB) to enable a comprehensive identification of novel sProteins. Six of the eight SIHUMIx species, for which no complete genomes were available, were sequenced and de novo assembled. Several proteomics approaches including two earlier optimized sProtein enrichment strategies were applied to specifically increase the chances for novel sProtein discovery. The search of tandem mass spectrometry (MS/MS) data against the multi-species iPtgxDB enabled the identification of 31 novel sProteins, of which the expression of 30 was supported by metatranscriptomics data. Using synthetic peptides, we were able to validate the expression of 25 novel sProteins. The comparison of sProtein expression in each single strain versus a multi-species community cultivation showed that six of these sProteins were only identified in the SIHUMIx community indicating a potentially important role of sProteins in the organization of microbial communities. Two of these novel sProteins have a potential antimicrobial function. Metabolic modelling revealed that a third sProtein is located in a genomic region encoding several enzymes relevant for the community metabolism within SIHUMIx. Conclusions We outline an integrated experimental and bioinformatics workflow for the discovery of novel sProteins in a simplified intestinal model system that can be generically applied to other microbial communities. The further analysis of novel sProteins uniquely expressed in the SIHUMIx multi-species community is expected to enable new insights into the role of sProteins on the functionality of bacterial communities such as those of the human intestinal tract.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 241-252
Author(s):  
Dyah Asri Handayani Taroepratjeka ◽  
Tsuyoshi Imai ◽  
Prapaipid Chairattanamanokorn ◽  
Alissara Reungsang

Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized, extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon, Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities, strategies can be developed to increase biohydrogen molar yield.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Andrew Oliver ◽  
Brandon LaMere ◽  
Claudia Weihe ◽  
Stephen Wandro ◽  
Karen L. Lindsay ◽  
...  

ABSTRACT Microbes and their metabolic products influence early-life immune and microbiome development, yet remain understudied during pregnancy. Vaginal microbial communities are typically dominated by one or a few well-adapted microbes which are able to survive in a narrow pH range and are adapted to live on host-derived carbon sources, likely sourced from glycogen and mucin present in the vaginal environment. We characterized the cervicovaginal microbiomes of 16 healthy women throughout the three trimesters of pregnancy. Additionally, we analyzed saliva and urine metabolomes using gas chromatography-time of flight mass spectrometry (GC-TOF MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) lipidomics approaches for samples from mothers and their infants through the first year of life. Amplicon sequencing revealed most women had either a simple community with one highly abundant species of Lactobacillus or a more diverse community characterized by a high abundance of Gardnerella, as has also been previously described in several independent cohorts. Integrating GC-TOF MS and lipidomics data with amplicon sequencing, we found metabolites that distinctly associate with particular communities. For example, cervicovaginal microbial communities dominated by Lactobacillus crispatus have high mannitol levels, which is unexpected given the characterization of L. crispatus as a homofermentative Lactobacillus species. It may be that fluctuations in which Lactobacillus dominate a particular vaginal microbiome are dictated by the availability of host sugars, such as fructose, which is the most likely substrate being converted to mannitol. Overall, using a multi-“omic” approach, we begin to address the genetic and molecular means by which a particular vaginal microbiome becomes vulnerable to large changes in composition. IMPORTANCE Humans have a unique vaginal microbiome compared to other mammals, characterized by low diversity and often dominated by Lactobacillus spp. Dramatic shifts in vaginal microbial communities sometimes contribute to the presence of a polymicrobial overgrowth condition called bacterial vaginosis (BV). However, many healthy women lacking BV symptoms have vaginal microbiomes dominated by microbes associated with BV, resulting in debate about the definition of a healthy vaginal microbiome. Despite substantial evidence that the reproductive health of a woman depends on the vaginal microbiota, future therapies that may improve reproductive health outcomes are stalled due to limited understanding surrounding the ecology of the vaginal microbiome. Here, we use sequencing and metabolomic techniques to show novel associations between vaginal microbes and metabolites during healthy pregnancy. We speculate these associations underlie microbiome dynamics and may contribute to a better understanding of transitions between alternative vaginal microbiome compositions.


2020 ◽  
Vol 96 (6) ◽  
Author(s):  
A Katsoula ◽  
S Vasileiadis ◽  
M Sapountzi ◽  
Dimitrios G Karpouzas

ABSTRACT Pesticides interact with microorganisms in various ways with the outcome being negative or positive for the soil microbiota. Pesticides' effects on soil microorganisms have been studied extensively in soil but not in other pesticides-exposed microbial habitats like the phyllosphere. We tested the hypothesis that soil and phyllosphere support distinct microbial communities, but exhibit a similar response (accelerated biodegradation or toxicity) to repeated exposure to the fungicide iprodione. Pepper plants received four repeated foliage or soil applications of iprodione, which accelerated its degradation in soil (DT50_1st = 1.23 and DT50_4th = 0.48 days) and on plant leaves (DT50_1st > 365 and DT50_4th = 5.95 days). The composition of the epiphytic and soil bacterial and fungal communities, determined by amplicon sequencing, was significantly altered by iprodione. The archaeal epiphytic and soil communities responded differently; the former showed no response to iprodione. Three iprodione-degrading Paenarthrobacter strains were isolated from soil and phyllosphere. They hydrolyzed iprodione to 3,5-dichloraniline via the formation of 3,5-dichlorophenyl-carboxiamide and 3,5-dichlorophenylurea-acetate, a pathway shared by other soil-derived arthrobacters implying a phylogenetic specialization in iprodione biotransformation. Our results suggest that iprodione-repeated application could affect soil and epiphytic microbial communities with implications for the homeostasis of the plant–soil system and agricultural production.


Sign in / Sign up

Export Citation Format

Share Document