EFFICIENT EXTRACTION OF THE NORMAL AND SHEAR TRACTION-SEPARATION RELATIONS FOR INTERFACES

Author(s):  
Kenneth Liechti
1999 ◽  
Vol 40 (6) ◽  
pp. 251-256 ◽  
Author(s):  
Susan B. Watson ◽  
Brian Brownlee ◽  
Trevor Satchwill ◽  
E. McCauley

An efficient extraction method is needed to measure trace levels of taste and odour compounds in surface waters. This is usually accomplished by costly and involved analytical procedures. We have developed a simpler alternative, using a commercially available microextraction apparatus (SPME). With this technique we successfully monitored trace levels of some target organoleptics (unsaturated aldehydes e.g. heptadienal, nonadienal, and related compounds) which commonly cause aquatic taste and odour. We identified these compounds in culture material, and analyzed for them during the development of odourous chrysophyte blooms in two ponds. Preliminary work has also found a good recovery of some important off-flavour terpenoids (e.g. geosmin and MIB). SPME is labour and cost efficient, and therefore appealing to water treatment facilities for detection and monitoring. In addition, SPME requires only small sample volumes, and is therefore suitable for culture work.


2020 ◽  
Vol 251 ◽  
pp. 117327 ◽  
Author(s):  
M.N. Keddar ◽  
A. Ballesteros-Gómez ◽  
M. Amiali ◽  
J.A. Siles ◽  
D. Zerrouki ◽  
...  
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1073
Author(s):  
Claudia Campillo-Cora ◽  
Laura Rodríguez-González ◽  
Manuel Arias-Estévez ◽  
David Fernández-Calviño ◽  
Diego Soto-Gómez

Chromium is an element that possess several oxidation states and can easily pass from one to another, so its behavior in soils is very complex. For this reason, determining its fate in the environment can be difficult. In this research work we tried to determine which factors affect the chromium fractionation in natural soils, conditioning chromium mobility. We paid special attention to the parent material. For this purpose, extraction experiments were carried out on spiked soils incubated for 50–60 days, using H2O, CaCl2 and diethylenetriaminepentaacetic acid (DTPA). The most efficient extraction rate in all soils was achieved using water, followed by CaCl2 and DTPA. We obtained models with an adjusted R2 of 0.8097, 0.8471 and 0.7509 for the H2O Cr, CaCl2 Cr and DTPA Cr respectively. All models were influenced by the amount of chromium added and the parent material: amphibolite and granite influenced the amount of H2O Cr extracted, and schist affected the other two fractions (CaCl2 and DTPA). Soil texture also played an important role in the chromium extraction, as well as the amounts of exchangeable aluminum and magnesium, and the bioavailable phosphorus. We concluded that it is possible to make relatively accurate predictions of the behavior of the different Cr fractions studied, so that optimized remediation strategies for chromium-contaminated soils can be designed on the basis of a physicochemical soil characterization.


2021 ◽  
Vol 333 ◽  
pp. 125107
Author(s):  
Jing Li ◽  
Zhaomeng Liu ◽  
Chengqi Feng ◽  
Xiaoying Liu ◽  
Fangyu Qin ◽  
...  

2021 ◽  
Vol 28 (8) ◽  
pp. 10262-10282
Author(s):  
Kanwal Shahid ◽  
Varsha Srivastava ◽  
Mika Sillanpää

AbstractEconomic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater, and these could be recovered with efficient technologies. Protein recovery from waste streams can provide an alternative resource that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been proposed as technologies that could be used for the aforementioned protein recovery. This present study focuses on the applicability of different technologies for protein recovery from different wastewaters. Membrane technology has been proven to be efficient for the effective concentration of proteins from waste sources. The main emphasis of the present short communication is to explore the possible strategies that could be utilized to recover or restore proteins from different wastewater sources. The presented study emphasizes the applicability of the recovery of proteins from various waste sources using membranes and the combination of the membrane process. Future research should focus on novel technologies that can help in the efficient extraction of these high-value compounds from wastes. Lastly, this short communication will evaluate the possibility of integrating membrane technology. This study will discuss the important proteins present in different industrial waste streams, such as those of potatoes, poultry, dairy, seafood and alfalfa, and the possible state of the art technologies for the recovery of these valuable proteins from the wastewater. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document