scholarly journals Análisis comparativo técnico - económico de producción de crudos pesados en pozos horizontales y direccionales, arena “m-1” formación napo, bloque 16, oriente ecuatoriano

2016 ◽  
Vol 3 (3) ◽  
pp. 165-171
Author(s):  
Carlos Portilla ◽  
Alamir Alvarez ◽  
Romel Erazo

Los tipos de perforación ejecutados en el campo Amo son: perforación vertical, direccional y horizontal. El objetivo de este trabajo es analizar qué tipo de perforación conviene hacer en el campo Amo. La selección del pozo a perforar, es mediante un análisis comparativo técnico-económico entre un pozo horizontal y un pozo direccional. Para este análisis es necesario disponer de la información técnica de los pozos seleccionados que se obtuvo a través de la operadora del Bloque 16. La formación Napo (arenisca M-1) son areniscas delgadas permeables. La completación de cada pozo está diseñada para extraer grandes cantidades de fluidos; la parte más elemental de este trabajo se basa en la comparación técnico-económica de los dos pozos seleccionados. En la evaluación técnica, se puede decir que el pozo horizontal Tigre 1, tiene una mayor producción de petróleo y agua, lo cual tiene un mejor rendimiento de ganancias. Finalmente, la perforación de los pozos, horizontal como direccional, ayuda a disminuir considerablemente la deforestación. Se concluye que la perforación de un pozo horizontal, comparado con un direccional, es más conveniente tanto técnica como económicamente, para los intereses de la empresa operadora de un campo.  Abstract The types of drilling well executed in the Amo oilfield are vertical, directional and horizontal. The main objective of this paper is to analyze the best drilling way should be made in the Amo oilfield. The drilling well selection is by a techno-economical comparative analysis of a horizontal well and a directional well. For to make this analysis was necessary the use technical information of the selected wells, the data was obtained through the operator-company of Block 16 (Amo Oil field). The Napo (sandstone M-1) sandstones are thin and permeable. The completion of each well is designed to extract large quantities of fluids. The most important part of this work is based on technical and economic comparison of the two selected wells. In the technical evaluation, we can say that the Tiger (horizontal well) has increased production of oil and water, which performs better profit.  The horizontal and directional well drilling would help to significantly reduce deforestation on the oilfield and increase the oil production. And, the horizontal drilling is more convenient than directional well according techno-economical aspects.

SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 494-502 ◽  
Author(s):  
Z.. Wu ◽  
S.. Vasantharajan ◽  
M.. El-Mandouh ◽  
P.V.. V. Suryanarayana

Summary In this paper, we present a new, semianalytical gravity-drainage model to predict the oil production of a cyclic-steam-stimulated horizontal well. The underlying assumption is that the cyclic steam injection creates a cylindrical steam chamber in the upper area of the well. Condensed water and heated oil in the chamber are driven by gravity and pressure drawdown toward the well. The heat loss during the soak period and during oil production is estimated under the assumption of vertical and radial conduction. The average temperature change in the chamber during the cycle is calculated using a semianalytical expression. Nonlinear, second-order ordinary differential equations are derived to describe the pressure distribution caused by the two-phase flow in the wellbore. A simple iteration scheme is proposed to solve these equations. The influx of heated oil and condensed water into the horizontal wellbore is calculated under the assumption of steady-state radial flow. The solution from the semianalytical formulation is compared against the results from a commercial thermal simulator for an example problem. It is shown that the model results are in good agreement with those obtained from reservoir simulation. Sensitivity studies for optimization of wellbore length, gravity drainage, bottomhole pressure, and steam-injection rate are conducted with the model. Results indicate that the proposed model can be used in the optimization of individual-well performance in cyclic-steam-injection heavy-oil development. The semianalytical thermal model presented in this work can offer an attractive alternative to numerical simulation for planning heavy-oil field development.


2021 ◽  
Vol 3 (3) ◽  
pp. 3-10
Author(s):  
B. H. Nugmanov

One of the ways to increase well oil production is to reduce the filtration resistance of the bottom-hole zone. Along with well-known stimulation methods, such as modern methods of treating wells bottom-hole zone, side tracking (drilling of lateral horizontal boreholes) is of great interest. The following works have been implemented Kalamkas field: a complex of geological, geophysical and field exploration; correlation schemes to track the lithology of the formation; clarifying structural maps and engineering maps; justifying activities to select one or more wells for horizontal drilling; hydrodynamic calculations and estimating their flow rate.


2016 ◽  
Author(s):  
Augustine O. Ifelebuegu ◽  
Zydan H. Zydan

ABSTRACT Intisar A oil field is a Libyan field located in Concession 103 and has been in production since 1968. In this paper, we report the field evaluation results of the various productions enhancement techniques and initiatives applied for incremental oil production. The impact of improved recovery by various waterflood optimisation processes including infill well drilling, installations of ESPs, current well re-completion, and conversion wells were evaluated taking into consideration surface facility constraints. An incremental total daily production of 9872 STB/D was achieved in the overall optimisation projects with infill horizontal well drilling producing the highest incremental recovery. The internal rate of return for the overall project was 72% and a payback period of 3.4 years. The lessons learned, and recommendations for future development of the field were established.


2017 ◽  
Author(s):  
Moudi Al-Ajmi ◽  
Bader Al-Azmi ◽  
Roberto Peña ◽  
Drew Hembling

2008 ◽  
Author(s):  
Parvez Jamil Butt ◽  
Raza Hassan Sayed ◽  
Timothy George Day ◽  
Abdallah Mohammad Behair ◽  
Saleh M. Dossari

2020 ◽  
pp. 120-127
Author(s):  
E. N. Skvortsova ◽  
O. P. Deryugina

The article discusses the results of a study on the selection of wax inhibitors that can be used at the Kondinskoye oil field during transportation and dehydration of the emulsion.Asphaltene precipitation is one of the most serious issues in oil production. The experiment was conducted in order to select the most effective wax inhibitors. We have carried out laboratory tests to choose the most effective wax inhibitor in the conditions of oil production, collection, preparation and external transport systems at the Kondinskoye oil field. Based on the data obtained, wax inhibitor-2, wax inhibitor-4, and wax inhibitor-6 have shown the best results in ensuring the efficiency of inhibition, which should be at least 70 %, and, therefore, they can be allowed to pilot tests. The recommended initial dosage of inhibitors according to the results obtained during pilot tests should be at least 500 g/t of oil.


2013 ◽  
Vol 701 ◽  
pp. 440-444
Author(s):  
Gang Liu ◽  
Peng Tao Liu ◽  
Bao Sheng He

Sand production is a serious problem during the exploitation of oil wells, and people put forward the concept of limited sand to alleviate this problem. Oil production with limited sanding is an efficient mod of production. In order to complete limited sand exploitation, improve the productivity of oil wells, a real-time sand monitoring system is needed to monitor the status of wells production. Besides acoustic sand monitoring and erosion-based sand monitoring, a vibration-based sand monitoring system with two installing styles is proposed recently. The paper points out the relationships between sand monitoring signals collected under intrusive and non-intrusive installing styles and sanding parameters, which lays a good foundation for further study and actual sand monitoring in oil field.


2015 ◽  
Vol 733 ◽  
pp. 17-22
Author(s):  
Yang Liu ◽  
Zhuo Pu He ◽  
Qi Ma ◽  
Yu Hang Yu

In order to improve the drilling speed, lower the costs of development and solve the challenge of economies of scale development in sulige gas field, the key techniques research on long horizontal section of horizontal well drilling speed are carried out. Through analyzing the well drilling and geological data in study area, and supplemented by the feedback of measured bottom hole parameters provided by underground engineering parameters measuring instrument, the key factors restricting the drilling speed are found out and finally developed a series of optimum fast drilling technologies of horizontal wells, including exploitation geology engineering technique, strengthen the control of wellbore trajectory, optimize the design of the drill bit and BHA and intensify the drilling parameters. These technologies have a high reference value to improve the ROP of horizontal well in sulige gas field.


Sign in / Sign up

Export Citation Format

Share Document