scholarly journals Super-resolved 3D mapping of molecular orientation with vibrational techniques

Author(s):  
Paulina Koziol ◽  
Karolina Kosowska ◽  
Danuta Liberda ◽  
Ferenc Borondics ◽  
Tomasz Wrobel

When a sample has an anisotropic structure, it is possible to obtain different information, when changing polarization of incident light. Using polarized light of a single vibrational band to determine the in-plane orientation and internal ordering of a sample is a typical practice in materials science. Acquiring mapping data at four different polarizations with a stationary sample than just at two polarizations offers much more insight into the sample structure with proper mathematical treatment. A concurrent analysis of two vibrational bands with perpendicular transition moment orientations allows the understanding of the orientational ordering in three dimensions. We show here, to the best of our knowledge, the first application of concurrent analysis to IR spectromicroscopy data and obtain orientation angles of a model spherulite polycaprolactone sample. Moreover, we show that this method can be easily applied to high resolution, diffraction limited FT-IR and Raman imaging and even to sub-diffraction limit O-PTIR imaging. Due to the non-tomographic experimental approach, no image distortion is visible and nanometer scale orientation domains can be observed. 3D bond orientation maps will enable in-depth characterization of sample structure in a quantitative manner enabling more precise control of their physicochemical properties and function.

2021 ◽  
Author(s):  
Paulina Koziol ◽  
Karolina Kosowska ◽  
Danuta Liberda ◽  
Ferenc Borondics ◽  
Tomasz Wrobel

When a sample has an anisotropic structure, it is possible to obtain different information, when changing polarization of incident light. Using polarized light of a single vibrational band to determine the in-plane orientation and internal ordering of a sample is a typical practice in materials science. Acquiring mapping data at four different polarizations with a stationary sample than just at two polarizations offers much more insight into the sample structure with proper mathematical treatment. A concurrent analysis of two vibrational bands with perpendicular transition moment orientations allows the understanding of the orientational ordering in three dimensions. We show here, to the best of our knowledge, the first application of concurrent analysis to IR spectromicroscopy data and obtain orientation angles of a model spherulite polycaprolactone sample. Moreover, we show that this method can be easily applied to high resolution, diffraction limited FT-IR and Raman imaging and even to sub-diffraction limit O-PTIR imaging. Due to the non-tomographic experimental approach, no image distortion is visible and nanometer scale orientation domains can be observed. 3D bond orientation maps will enable in-depth characterization of sample structure in a quantitative manner enabling more precise control of their physicochemical properties and function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Larissa Kohler ◽  
Matthias Mader ◽  
Christian Kern ◽  
Martin Wegener ◽  
David Hunger

AbstractThe dynamics of nanosystems in solution contain a wealth of information with relevance for diverse fields ranging from materials science to biology and biomedical applications. When nanosystems are marked with fluorophores or strong scatterers, it is possible to track their position and reveal internal motion with high spatial and temporal resolution. However, markers can be toxic, expensive, or change the object’s intrinsic properties. Here, we simultaneously measure dispersive frequency shifts of three transverse modes of a high-finesse microcavity to obtain the three-dimensional path of unlabeled SiO2 nanospheres with 300 μs temporal and down to 8 nm spatial resolution. This allows us to quantitatively determine properties such as the polarizability, hydrodynamic radius, and effective refractive index. The fiber-based cavity is integrated in a direct-laser-written microfluidic device that enables the precise control of the fluid with ultra-small sample volumes. Our approach enables quantitative nanomaterial characterization and the analysis of biomolecular motion at high bandwidth.


2020 ◽  
Author(s):  
Larissa Kohler ◽  
Matthias Mader ◽  
Christian Kern ◽  
Martin Wegener ◽  
David Hunger

Abstract The dynamics of nanosystems in solution contains a wealth of information with relevance for diverse fields ranging from materials science to biology and biomedical applications. When nanosystems are marked with fluorophores or strong scatterers, it is possible to track their position and reveal internal motion with high spatial and temporal resolution. However, markers can be toxic, expensive, or change the object's intrinsic properties. Here, we simultaneously measure dispersive frequency shifts of three transversal modes of a high-finesse microcavity to obtain the three-dimensional path of unlabeled SiO2 nanospheres with 300μs temporal and down to 8nm spatial resolution. This allows us to quantitatively determine properties such as the polarizability, hydrodynamic radius, and effective refractive index. The fiber-based cavity is integrated in a direct-laser-written microfluidic device that enables the precise control of the fluid with ultra-small sample volumes. Our approach enables quantitative nanomaterial characterization and the analysis of biomolecular motion at high bandwidth.


2021 ◽  
Vol 7 (3) ◽  
pp. eabc8660
Author(s):  
F. Mirani ◽  
A. Maffini ◽  
F. Casamichiela ◽  
A. Pazzaglia ◽  
A. Formenti ◽  
...  

Among the existing elemental characterization techniques, particle-induced x-ray emission (PIXE) and energy-dispersive x-ray (EDX) spectroscopy are two of the most widely used in different scientific and technological fields. Here, we present the first quantitative laser-driven PIXE and laser-driven EDX experimental investigation performed at the Centro de Láseres Pulsados in Salamanca. Thanks to their potential for compactness and portability, laser-driven particle sources are very appealing for materials science applications, especially for materials analysis techniques. We demonstrate the possibility to exploit the x-ray signal produced by the co-irradiation with both electrons and protons to identify the elements in the sample. We show that, using the proton beam only, we can successfully obtain quantitative information about the sample structure through laser-driven PIXE analysis. These results pave the way toward the development of a compact and multifunctional apparatus for the elemental analysis of materials based on a laser-driven particle source.


2020 ◽  
Vol 126 (9) ◽  
Author(s):  
Joachim Jelken ◽  
Carsten Henkel ◽  
Svetlana Santer

Abstract We study the peculiar response of photo-sensitive polymer films irradiated with a certain type of interference pattern where one interfering beam is S-polarized, while the second one is P-polarized. The polymer film, although in a glassy state, deforms following the local polarization distribution of the incident light, and a surface relief grating (SRG) appears whose period is half the optical one. All other types of interference patterns result in the matching of both periods. The topographical response is triggered by the alignment of photo-responsive azobenzene containing polymer side chains orthogonal to the local electrical field, resulting in a bulk birefringence grating (BBG). We investigate the process of dual grating formation (SRG and BBG) in a polymer film utilizing a dedicated set-up that combines probe beam diffraction and atomic force microscopy (AFM) measurements, and permits acquiring in situ and in real-time information about changes in local topography and birefringence. We find that the SRG maxima appear at the positions of linearly polarized light (tilted by 45° relative to the grating vector), causing the formation of the half-period topography. This permits to inscribe symmetric and asymmetric topography gratings with sub-wavelength period, while changing only slightly the polarization of one of the interfering beams. We demonstrate an easy generation of sawtooth profiles (blazed gratings) with adjustable shape. With these results, we have taken a significant step in understanding the photo-induced deformation of azo-polymer films.


2010 ◽  
Vol 17 (1) ◽  
pp. 125-131
Author(s):  
Howard J. Swatland

AbstractMicroscope and fiber-optic spectrophotometry of transmittance and backscattering both showed moss leaves to be capable of casting strong shadows, with a single leaf blocking approximately 90% of incident light from a point source. In leaves with only one layer of cells, the transmittance through the cytoplasm of single cells was similar to that for whole leaves. Analysis of cell wall birefringence by polarized-light interferometry indicated that cell walls might normally scatter rather than transmit light. Spectra transmitted through, or backscattered from, the upper green layers of moss were dominated by selective absorbance from chlorophyll, but there was also evidence of wavelength-dependent scattering, as detected in the lower layers of brown, dead moss. Specular reflectance from moss leaves was detected by polarimetry and may have contributed to the relatively high macroscopic transmittance of stationary moss in water. Shadowing by moss leaves was confirmed by dynamic measurements of mosses in turbulent water without bubbles. Flicker patterns from leaves were superimposed on the underwater flicker pattern created at the air-water interface, thus flecks of light were reduced in intensity, increased in frequency, and decreased in duration. This was detected with both point source and diffuse illumination of samples.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950305 ◽  
Author(s):  
Wenhua Zhu ◽  
Bo Wang ◽  
Chenhao Gao ◽  
Kunhua Wen ◽  
Ziming Meng ◽  
...  

This paper designed a novel three-output reflective packaged grating. The optimized parameters such as the period and depth of the high-efficiency three-output grating with an incident wavelength of 1550 nm can be calculated by rigorous coupled-wave analysis (RCWA). According to the optimized result, the grating can diffract the incident light energy into three orders with an efficiency of nearly 33% under the premise of second Bragg angle incidence and the given duty ratio of 0.5. The diffraction efficiency of the packaged grating is improved compared to the surface-relief three-output grating under second Bragg angle incidence, especially for TE-polarized light.


2009 ◽  
Vol 81 (12) ◽  
pp. 2157-2181 ◽  
Author(s):  
Faisal A. Aldaye ◽  
Hanadi F. Sleiman

Nature uses deoxyribonucleic acid (DNA) as the main material for the storage and transmission of life’s blueprint. Today, DNA is being used as a “smart” material to help solve a number of long-standing issues facing researchers in materials science and nanotechnology. In DNA nanotechnology, DNA’s powerful base-pair molecular recognition criteria are utilized to control the final structure and function of the material being generated. A sub-area of research that our group has recently termed “supramolecular DNA nanotechnology” is emerging and is extending the limits of this molecule in nanotechnology by further fine-tuning DNA’s structural and functional potential. This review will discuss the fruition and fundamentals of supramolecular DNA nanotechnology, as well as its future as a viable science in a material world.


The iridescent cuticle of certain Rutelino scarab beetles, which is a form optically active and selectively reflects circularly polarized light, incorporates an NH 4 OH -extractable component The ultraviolet absorption spectrum of this component, together with its chromatographic and refractive properties, identify it as uric acid (2,6,8-trihydroxypurine). All species of Plusiotis examined have uric acid in their reflecting layers, as do several species of Anoplognathus. Plusiotis resplendens has a reflecting layer with a uric acid volume fraction of 0.7, P . optima a volume fraction of 0.6. The reflecting layer of P . resplenden s has an anticlockwise helicoidal architecture, the optical thickness of the helicoidal p itch being such that it constructively interferes with visible light wavelengths. An anticlockwise helicoid constructively interferes with only the left circularly polarized component of incident light, right circularly polarized light being transmitted without attenuation. P. resplendens has a 1.8 /xm thick unidirectional layer embedded within the helicoid which functions as a perfect halfwave retardation plate for wavelength 590 nm . This halfwave plate enables the helicoidal reflector in this species to reflect both left and right circularly polarized components of incident light. After passing through the halfwave plate, transmitted right circularly polarized light becomes left circularly polarized ; this light is now reflected and emerges from the cuticle right circularly polarized, after passing back through the halfwave plate. Consequently the total reflectivity of circularly polarized incident light is greater in P. resplendens than in any other species examined; the plate also reduces multiple internal reflexions. Interferometric analysis of the refractive properties of the helicoidal reflectors in species of Plusiotis showed that the ordered incorporation of uric acid increases the birefringence of the system by a factor of five times, e.g. the in tact birefringence of the unidirectional layer of P . resplendens is 0.166 at wavelength 560 nm ; after uric acid extraction the birefringence is reduced to 0.034. As the coefficient of reflexion of a helicoidal reflector is directly proportional to the birefringence of the individual planes comprising the helicoid, beetles incorporating uric acid into their reflecting surfaces reflect circularly polarized light far more efficiently than beetles lacking uric acid. Refractive index values for a single multicomponent plane of the helicoid have been summarized as a biaxial indicatrix, with the Z axis tilte dat 45° to the plane of the epicuticle. Beetle reflecting layers which incorporate uric acid have twenty times greater optical rotatory power compared with reflecting layers lacking this component. Mathematical treatments dealing with helicoidal reflectors predict the form optical rotatory power to be a function of the square of the birefringence, which is in agreement with the experimental observations. To enable uric acid to have the optical effects mentioned above, an epitaxial incorporation into the helicoidal framework is necessary. Although uric acid is a common cytoplasmic reflecting material in arthropods, this is the first record of its presence in an extracellular (cuticular) reflector.


Sign in / Sign up

Export Citation Format

Share Document