scholarly journals Chemical Targeting of Rhodol Voltage Sensitive Dyes to Dopaminergic Neurons

Author(s):  
Tomas Fiala ◽  
Eugene V. Mosharov ◽  
Jihang Wang ◽  
Adriana M. Mendieta ◽  
Se Joon Choi ◽  
...  

Optical imaging of changes in membrane potential of living cells can be achieved by the means of fluorescent voltage sensitive dyes (VSDs). A particularly challenging task is to efficiently deliver these highly lipophilic probes to specific neuronal subpopulations in brain tissue. We have tackled this task by designing a solubilizing, hydrophilic polymer platform that carries a high-affinity ligand for a membrane protein marker of interest and a fluorescent VSD. Here, we disclose an improved design of polymer supported probes for chemical, non-genetic targeting of voltage sensors to axons natively expressing the dopamine transporter in ex vivo mouse brain tissue. We first show that for negatively charged rhodol VSDs functioning on the photoinduced electron transfer principle, poly(ethylene glycol) (PEG) as a carrier enables targeting with higher selectivity than the polysaccharide dextran in HEK cell culture. In the same experimental setting, we also demonstrate that incorporation of an azetidine ring in the rhodol chromophore substantially increases the brightness and voltage sensitivity of the respective VSD. We show that the superior properties of the optimized sensor are transferable to recording of electrically evoked activity from dopaminergic axons in mouse striatal slices after averaging of multiple trials. Finally, we suggest the next milestones for the field to achieve single-scan recordings with non-genetically targeted VSDs in native brain tissue.

2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


2017 ◽  
Vol 4 (S) ◽  
pp. 34
Author(s):  
Ming-Fa Hsieh

The use of antibiotics in the treatment of acne in specific group (pregnant women) of patients can lead to serious complications. We have previously demonstrated that the nanoparticles made of block copolymers of poly (ethylene glycol) and poly(e-caprolactone) can inhibit the growth of Propionibacterium acnes (P. acnes), a bacterium highly associated with the progress of acne vulgaris in the human skin [Polymers 2016; 8, 321]. To reduce the amount of antibiotics used in the treatment of skin acne, we have further demonstrated that a bacterium in the human skin microbiome can utilize PEG-based polymers to produce various short-chain fatty acids (SCFAs) which suppressed the growth of P. acnes. PEG-based polymers were chosen as selective fermentation initiators which specifically induced the fermentation of the skin commensal bacterium but not P. acnes. Interestingly, PEG-based polymers can efficiently suppress the growth of P. acnes. An acne ex vivo explant was established by using acne biopsies collected from patients with acne vulgaris at the early and middle stages. The levels of pro-inflammatory interleukin (IL)-8 cytokine in early- and middle-staged acnes were significantly higher than those in healthy skins. Incubation of acne ex vivo explants with sucrose remarkably reduced the level of IL-8 and the number of P. acnes. Results from mouse studies revealed that PEG-based polymer functions as antibiotic adjuvants which can considerably reduce the effective doses of clindamycin, a clinically-used acne antibiotic


Author(s):  
Alastair J Kirby ◽  
José P Lavrador ◽  
Istvan Bodi ◽  
Francesco Vergani ◽  
Ranjeev Bhangoo ◽  
...  

Abstract Background Lower-grade gliomas may be indolent for many years before developing malignant behaviour. The reasons mechanisms underlying malignant progression remain unclear. Methods We collected blocks of live human brain tissue donated by people undergoing glioma resection. The tissue blocks extended through the peritumoral cortex and into the glioma. The living human brain tissue was cut into ex vivo brain slices and bathed in 5-aminolevulinic acid (5-ALA). High-grade glioma cells avidly take up 5-aminolevulinic acid (5-ALA) and accumulate high levels of the fluorescent metabolite, Protoporphyrin IX (PpIX). We exploited the PpIX fluorescence emitted by higher-grade glioma cells to investigate the earliest stages of malignant progression in lower-grade gliomas. Results We found sparsely-distributed ‘hot-spots’ of PpIX-positive cells in living lower-grade glioma tissue. Glioma cells and endothelial cells formed part of the PpIX hotspots. Glioma cells in PpIX hotspots were IDH1 mutant and expressed nestin suggesting they had acquired stem-like properties. Spatial analysis with 5-ALA conjugated quantum dots indicated that these glioma cells replicated adjacent to blood vessels. PpIX hotspots formed in the absence of angiogenesis. Conclusion Our data show that PpIX hotspots represent microdomains of cells with high-grade potential within lower-grade gliomas and identify locations where malignant progression could start.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Anuja Neve ◽  
Karthiga Santhana Kumar ◽  
Dimitra Tripolitsioti ◽  
Michael A. Grotzer ◽  
Martin Baumgartner
Keyword(s):  
Ex Vivo ◽  

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii56-iii57
Author(s):  
W Zhou ◽  
B Klink ◽  
G Dittmar ◽  
P Nazarov ◽  
E M Garcia ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) cell infiltration into the surrounding normal brain tissue where the blood brain barrier is intact, represents a major problem for clinical management and therapy. There is a vital need to understand the molecular mechanism that drives tumor cell invasion into the surrounding brain. We have previously developed a 3D coculture model where mature brain organoids are confronted with patient-derived glioblastoma stem-like cells (GSCs). In such a coculture system, single cell invasion into the normal brain tissue can be studied in detail. Here, we first describe in detail, by RNA-seq and proteomics, the differentiation of various neural cell lineages into mature brain organoids as well as their cellular organization. By real-time confocal microscopy and imaging analyses we also determine the speed of tumor cell invasion into the brain. Finally, we used this coculture system to delineate in detail the cellular heterogeneity within the invasive compartment and their gene expression. MATERIAL AND METHODS Immunohistochemistry and immunofluorescence were used to determine the expression and distribution of mature neurons, astrocytes, oligodendrocytes, and microglia within the brain organoids. Proteomics and RNA-seq were used to determine brain development ex-vivo. To assess the clonal composition of the GBM-invasive compartment, we used cellular (RGB) barcoding technology. By advanced imaging, we tracked in real time the invasion of barcoded cells into the brain organoids. Finally, we isolated invasive cells and non-invasive cells from our coculture system and used single cell sequencing to analyze their gene expression profiles and molecular phenotypes. RESULTS Immunohistochemistry and immunofluorescence showed that brain organoids, after 21 days of differentiation, display a highly cellular and structural organization. RNA-seq and proteomics, performed at different time points of organoid differentiation, revealed that the brain organoids develop into mature brain structures after 21 days as verified by a comparative analysis to normal rat brain development in vivo. Imaging analyses showed that multiple clones within the GBMs have the capacity to invade into the brain tissue with an average speed of ~ 20 μm/h. RNA-sec analysis of the invasive compartment revealed a strong up-regulation of genes and pathways associated with anaerobic respiration (glycolysis). CONCLUSION We describe a highly standardized brain organoid coculture system that can be used to delineate GBM invasion ex-vivo. We demonstrate that this platform can be used to unravel the mechanisms that drive GBM invasion into the normal brain.


2020 ◽  
Vol 8 (21) ◽  
pp. 5911-5919 ◽  
Author(s):  
Léa Rosselle ◽  
Anna Rita Cantelmo ◽  
Alexandre Barras ◽  
Nadia Skandrani ◽  
Michael Pastore ◽  
...  

NIR-light activable cryogels based on butyl methacrylate and poly(ethylene glycol) methyl ether methacrylate modified with reduced graphene oxide and loaded with cefepime was tested on an infected ex vivo skin model as skin regeneration scaffold.


Author(s):  
Benjamin Lochocki ◽  
Tjado H. J. Morrema ◽  
Jurre den Haan ◽  
Freek Ariese ◽  
Femke H. Bouwman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document